
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE / S. VASUKI / CSE / SNSCT

Grammars and BNF Notation

BNF Notation

BNF stands for Backus-Naur Form. It is used to write a formal representation of a context-

free grammar. It is also used to describe the syntax of a programming language.

BNF notation is basically just a variant of a context-free grammar.

In BNF, productions have the form:

1. Left side → definition

Where leftside ∈ (Vn∪ Vt)+ and definition ∈ (Vn∪ Vt)*. In BNF, the leftside contains one non-

terminal.

We can define the several productions with the same leftside. All the productions are

separated by a vertical bar symbol "|".

BNF stands for Backus Naur Form notation. It is a formal method for describing the syntax

of programming language which is understood as Backus Naur Formas introduced by John

Bakus and Peter Naur in 1960. BNF and CFG (Context Free Grammar) were nearly identical.

BNF may be a meta-language (a language that cannot describe another language) for primary

languages.

For human consumption, a proper notation for encoding grammars intended and called

Backus Naur Form (BNF). Different languages have different description and rules but the

general structure of BNF is given below –

name ::= expansion

The symbol ::= means “may expand into” and “may get replaced with.” In some texts, a

reputation is additionally called a non-terminal symbol.

 Every name in Backus-Naur form is surrounded by angle brackets, < >, whether it

appears on the left- or right-hand side of the rule.

https://www.geeksforgeeks.org/classification-of-context-free-grammars/

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE / S. VASUKI / CSE / SNSCT

 An expansion is an expression containing terminal symbols and non-terminal symbols,

joined together by sequencing and selection.

 A terminal symbol may be a literal like (“+” or “function”) or a category of literals

(like integer).

 Simply juxtaposing expressions indicates sequencing.

 A vertical bar | indicates choice.

Examples :
<expr> ::= <term> "+" <expr>

 | <term>

<term> ::= <factor> "*" <term>

 | <factor>

<factor> ::= "(" <expr> ")"

 | <const>

<const> ::= integer

Rules For making BNF :

Naturally, we will define a grammar for rules in BNF –

rule → name ::= expansion

name → < identifier >

expansion → expansion expansion

expansion → expansion | expansion

expansion → name

expansion → terminal

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE / S. VASUKI / CSE / SNSCT

 We might define identifiers as using the regular expression [-A-Za-z_0-9]+.

 A terminal could be a quoted literal (like “+”, “switch” or ” “<<=”) or the name of a

category of literals (like integer).

 The name of a category of literals is typically defined by other means, like a daily

expression or maybe prose.

It is common to seek out regular-expression-like operations inside grammars. as an

example, the Python lexical specification uses them. In these grammars:

postfix * means "repeated 0 or more times"

postfix + means "repeated 1 or more times"

postfix ? means "0 or 1 times"

The definition of floating-point literals in Python may be an exemplar of mixing several

notations –

floatnumber ::= pointfloat | exponentfloat

pointfloat ::= [intpart] fraction | intpart "."

exponentfloat ::= (intpart | pointfloat) exponent

intpart ::= digit+

fraction ::= "." digit+

exponent ::= ("e" | "E

	BNF Notation
	In BNF, productions have the form:

