

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35

(AN AUTONOMOUS INSTITUTION)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST202-DATABASE MANAGEMENT SYSTEM

UNIT-III

Database Design

Topic: Functional Dependency

Functional Dependency

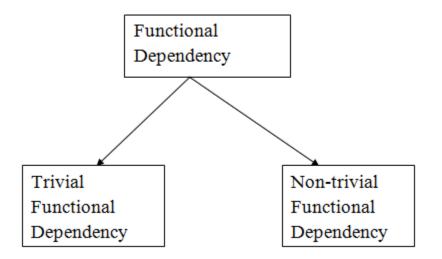
The functional dependency is a relationship that exists between two attributes. It typically exists between the primary key and non-key attribute within a table.

1. X \rightarrow Y

The left side of FD is known as a determinant, the right side of the production is known as a dependent.

For example:

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.


Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because if we know the Emp_Id, we can tell that employee name associated with it.

Functional dependency can be written as:

1. $Emp_Id \rightarrow Emp_Name$

We can say that Emp_Name is functionally dependent on Emp_Id.

Types of Functional dependency

1. Trivial functional dependency

- \circ A \rightarrow B has trivial functional dependency if B is a subset of A.
- $_{\circ}$ The following dependencies are also trivial like: A \rightarrow A, B \rightarrow B

Example:

- 1. Consider a table with two columns Employee_Id and Employee_Name.
- 2. {Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as
- 3. Employee_Id is a subset of {Employee_Id, Employee_Name}.
- 4. Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are trivial dependencies too.

2. Non-trivial functional dependency

- \circ A \rightarrow B has a non-trivial functional dependency if B is not a subset of A.
- When A intersection B is NULL, then $A \rightarrow B$ is called as complete non-trivial.

Example:

- 1. ID \rightarrow Name,
- 2. Name \rightarrow DOB