

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Relational Algebra

Relational algebra is a procedural query language. It gives a step-by-step process to obtain the result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

- The select operation selects tuples that satisfy a given predicate.
- It is denoted by sigma (σ).
- 1. Notation: $\sigma p(r)$

Where:

 $\boldsymbol{\sigma}$ is used for selection prediction

r is used for relation

p is used as a propositional logic formula which may use connectors like: AND OR and NOT. These relational can use as relational operators like =, \neq , \geq , <, >, \leq .

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT

Downtown	L-17	1000
Redwood	L-23	2000
Perryride	L-15	1500
Downtown	L-14	1500
Mianus	L-13	500
Roundhill	L-11	900
Perryride	L-16	1300

Input:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

1. σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME LOAN_NO AMOUNT

Perryride	L-15	1500
Perryride	L-16	1300

- 2. Project Operation:
 - This operation shows the list of those attributes that we wish to appear in the result. Rest of the attributes are eliminated from the table.
 - It is denoted by \prod .
 - 1. Notation: $\prod A1$, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAMESTREETCITYJonesMainHarrisonSmithNorthRyeHaysMainHarrisonCurryNorthRyeJohnsonAlmaBrooklynBrooksSenatorBrooklyn

Input:

1. ∏ NAME, CITY (CUSTOMER)

Output:

NAME CITY

Jones Harrison Smith Rye Hays Harrison Curry Rye Johnson Brooklyn Brooks Brooklyn

- 3. Union Operation:
 - Suppose there are two tuples R and S. The union operation contains all the tuples that are either in R or S or both in R & S.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

- It eliminates the duplicate tuples. It is denoted by U.
- 1. Notation: $R \cup S$

A union operation must hold the following condition:

- R and S must have the attribute of the same number.
- Duplicate tuples are eliminated automatically.

Example:

DEPOSITOR RELATION

CUSTOMER_NAME ACCOUNT_NO

Johnson	A-101
Smith	A-121
Mayes	A-321
Turner	A-176
Johnson	A-273
Jones	A-472
Lindsay	A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Jones	L-1/
Smith	L-23
Hayes	L-15
Jackson	L-14
Curry	L-93
Smith	L-11
Williams	L-17

Input:

1. \prod CUSTOMER_NAME (BORROW) $\cup \prod$ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Johnson Smith Hayes Turner Jones

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Lindsay Jackson

Curry

Williams

Mayes

- 4. Set Intersection:
 - Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in both R & S.
 - It is denoted by intersection \cap .
 - 1. Notation: $R \cap S$

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. \prod CUSTOMER_NAME (BORROW) \cap \prod CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Smith

Jones

5. Set Difference:

- Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in R but not in S.
- It is denoted by intersection minus (-).
- 1. Notation: R S

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. ∏ CUSTOMER_NAME (BORROW) - ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Jackson Hayes Willians Curry 6. Cartesian product

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

- The Cartesian product is used to combine each row in one table with each row in the other table. It is also known as a cross product.
- It is denoted by X.
- 1. Notation: E X D

Example:

EMPLOYEE

EMP_ID EMP_NAME EMP_DEPT

- 1 Smith A
- 2 Harry C
- 3 John B

DEPARTMENT

DEPT_NO DEPT_NAME

- A Marketing
- B Sales
- C Legal

Input:

1. EMPLOYEE X DEPARTMENT

Output:

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME

1	Smith	А	А	Marketing
1	Smith	А	В	Sales
1	Smith	А	С	Legal
2	Harry	С	А	Marketing
2	Harry	С	В	Sales
2	Harry	С	С	Legal
3	John	В	А	Marketing
3	John	В	В	Sales
3	John	В	С	Legal

7. Rename Operation:

The rename operation is used to rename the output relation. It is denoted by **rho** (ρ).

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

1. ρ(STUDENT1, STUDENT)