SNS COLLEGE OF TECHNOLOGY, COIMBATORE -35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Relational Algebra

Relational algebra is a procedural query language. It gives a step-by-step process to obtain the result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

- The select operation selects tuples that satisfy a given predicate.
- It is denoted by sigma (σ).

1. Notation: $\sigma \mathrm{p}(\mathrm{r})$

Where:

$\boldsymbol{\sigma}$ is used for selection prediction
\mathbf{r} is used for relation
\mathbf{p} is used as a propositional logic formula which may use connectors like: AND OR and NOT. These relational can use as relational operators like $=, \neq, \geq,<,>, \leq$.

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT		
Downtown	L-17	1000
Redwood	L-23	2000
Perryride	L-15	1500
Downtown	L-14	1500
Mianus	L-13	500
Roundhill	L-11	900
Perryride	L-16	1300

Input:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

1. σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME LOAN_NO AMOUNT

Perryride	L-15	1500
Perryride	L-16	1300

2. Project Operation:

- This operation shows the list of those attributes that we wish to appear in the result. Rest of the attributes are eliminated from the table.
- It is denoted by Π.

1. Notation: П A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation \mathbf{r}.

Example: CUSTOMER RELATION

NAME STREET CITY

Jones	Main	Harrison
Smith	North	Rye
Hays	Main	Harrison
Curry	North	Rye
Johnson Alma	Brooklyn	
Brooks	Senator Brooklyn	

Input:

1. П NAME, CITY (CUSTOMER)

Output:

NAME CITY

Jones Harrison
Smith Rye
Hays Harrison
Curry Rye
Johnson Brooklyn
Brooks Brooklyn
3. Union Operation:

- Suppose there are two tuples R and S. The union operation contains all the tuples that are either in R or S or both in R \& S.

SNS COLLEGE OF TECHNOLOGY, COIMBATORE -35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

- It eliminates the duplicate tuples. It is denoted by U.

1. Notation: $\mathrm{R} \cup \mathrm{S}$

A union operation must hold the following condition:

- R and S must have the attribute of the same number.
- Duplicate tuples are eliminated automatically.

Example:

DEPOSITOR RELATION

CUSTOMER_NAME ACCOUNT_NO

Johnson A-101
Smith A-121
Mayes A-321
Turner A-176
Johnson A-273
Jones A-472
Lindsay A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Jones L-17

Smith L-23
Hayes L-15
Jackson L-14
Curry L-93
Smith L-11
Williams L-17

Input:

1. П CUSTOMER_NAME (BORROW) U П CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Johnson
Smith
Hayes
Turner
Jones

SNS COLLEGE OF TECHNOLOGY, COIMBATORE -35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
Lindsay
Jackson
Curry
Williams
Mayes
4. Set Intersection:

- Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in both R \& S.
- It is denoted by intersection \cap.

1. Notation: $\mathrm{R} \cap \mathrm{S}$

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. $П$ CUSTOMER_NAME (BORROW) \cap П CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Smith
Jones
5. Set Difference:

- Suppose there are two tuples R and S . The set intersection operation contains all tuples that are in R but not in S .
- It is denoted by intersection minus (-).

1. Notation: $\mathrm{R}-\mathrm{S}$

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. Π CUSTOMER_NAME (BORROW) - Π CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER NAME

Jackson
Hayes
Willians
Curry
6. Cartesian product

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

- The Cartesian product is used to combine each row in one table with each row in the other table. It is also known as a cross product.
- It is denoted by X .

1. Notation: E X D

Example:

EMPLOYEE

EMP_ID	EMP_NAME EMP_DEPT	
1	Smith	A
2	Harry	C
3	John	B

DEPARTMENT

DEPT_NO DEPT_NAME

A Marketing
B Sales
C Legal

Input:

1. EMPLOYEE X DEPARTMENT

Output:

EMP_ID	EMP_NAME	EMP_DEPT	DEPT_NO	DEPT_NAME
1	Smith	A	A	Marketing
1	Smith	A	B	Sales
1	Smith	A	C	Legal
2	Harry	C	A	Marketing
2	Harry	C	B	Sales
2	Harry	C	C	Legal
3	John	B	A	Marketing
3	John	B	B	Sales
3	John	B	C	Legal

7. Rename Operation:

The rename operation is used to rename the output relation. It is denoted by rho (ρ).
Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

1. $\rho($ STUDENT1, STUDENT)
