SNS College of Technology(Autonomous)

 Coimbatore-35Academic Year 2023-2024 (Even)

UNIT 1 QUANTITATIVE ABILITY III

T4: Logarithms, Equations, Progressions.

Introduction

Logarithm is an important topic that needs to be prepared well for the Quantitative Aptitude. It requires practicing a lot of questions within time. Logarithmic formulas make it easy to solve questions easily in competitive examinations. The following article covers the concepts, formulas, and rules that a learner needs to know before approaching the questions.
Logarithmic function is inverse to the exponential function. A logarithm to the base b is the power to which b must be raised to produce a given number. For example, is equal to the power to which 2 must be raised in order to produce 8 . Clearly, $2^{\wedge} 3=8$ so $=3$. In general, for $\mathrm{b}>0$ and b not equal to 1 .

Logarithmic identity:
$\log \left(b^{\wedge} x\right)=x^{*} \log (b)$
Product rule:
$\log (b, x y)=\log (b, x)+\log (b, y)$
Quotient rule:
$\log (b, x(y)=\log (b, x)-\log (b, y)$
Power rule:
$\log \left(b, x^{\wedge} p\right)=p^{*} \log (b, x)$
Change of base formula:
$\log (b, x)=\log (a, x) / \log (a, b)$

Where:

\boldsymbol{b} is the base of the logarithm
\boldsymbol{x} and y are the arguments of the logarithm
p is a constant
\boldsymbol{a} is a different base, usually chosen to be 10 or e.

Find the value of x in equation given $8^{x+1}-8^{x-1}=63$

Solution:

Take 8^{x-1} common from the eq.
It reduce to
$8^{x-1}\left(8^{2}-1\right)=63$
$8^{x-1}=1$
Hence, $x-1=0$
$x=1$

Find the value of x for the eq. given $\log _{0.25} x=16$ Solution:

```
log}0.25x=1
```

It can be write as
$x=(0.25)^{16}$
$x=(1 / 4)^{16}$
$x=4^{-16}$

Solve the equation $\log _{12} 1728 \times \log _{9} 6561$ Solution:
It can be written as:
$\log _{12}\left(12^{3}\right) \times \log _{9}\left(9_{4}\right)$
$=3 \log _{12} 12 \times 4 \log _{9} 9$
$=3 \times 4=12$

Question 4: Solve for $x: \log _{x} 3+\log _{x} 9+\log _{x} 27+\log _{x} 81=10$ Solution:
It can be write as:
$\log _{x}(3 \times 9 \times 27 \times 81)=10$
$\log _{x}\left(3^{1} \times 3^{2} \times 3^{3} \times 3^{4}\right)=10$
$\log _{x}\left(3^{10}\right)=10$
$10 \log _{x} 3=10$
then, $x=3$

If $\log (a+3)+\log (a-3)=1$, then $a=$?
Solution:
$\log _{10}((a+3)(a-3))=1$
$\log _{10}\left(\mathrm{a}^{2}-9\right)=1$
$\left(\mathrm{a}^{2}-9\right)=10$
$\mathrm{a}^{2}=19$
$a=\sqrt{ } 19$

Solve $1 / \log _{a b}(a b c d)+1 / \log _{b c}(a b c d)+1 / \log _{c d}(a b c d)+1 / \log _{d a}(a b c d)$ Solution:

```
= log
= =og
= log
=2 log
=2
```

If $x y z=10$, then solve $\log \left(x^{n} y^{n} / z^{n}\right)+\log \left(y^{n} z^{n} / x^{n}\right)+\log \left(z^{n} x^{n} / y^{n}\right)$ Solution:
$\log \left(x^{n} y^{n} / z^{n} y^{n} z^{n} / x^{n} * z^{n} x^{n} / y^{n}\right)$
$=\log x^{n} y^{n} z^{n}$
$=\log (x y z)^{n}$
$=\log _{10} 10^{n}$
$=\mathbf{n}$

Question 8: Find $(121 / 10)^{x}=3$

Solution:
Apply logarithm on both sides
$\log _{(121 / 10)}(121 / 10)^{\mathrm{x}}=\log _{(121 / 10)} 3$
$x=(\log 3) /(\log 121-\log 10)$
$x=(\log 3) /(2 \log 11-1)$

Solve $\log \left(2 x^{2}+17\right)=\log (x-3)^{2}$ Solution:
$\log \left(2 x^{2}+17\right)=\log \left(x^{2}-6 x+9\right)$
$2 x^{2}+17=x^{2}-6 x+9$
$x^{2}+6 x+8=0$
$x^{2}+4 x+2 x+8=0$
$x(x+4)+2(x+4)=0$
$(x+4)(x+2)=0$
$x=-4,-2$
Question 10: $\log _{2}\left(33-3^{x}\right)=10^{\log (5-x)}$. Solve for x . Solution:
Put $x=0$
$\log _{2}(33-1)=10^{\log (5)}$
$\log _{2} 32=5$
$5 \log _{2} 2=5$
$5=5$
LHS = RHS

