

#### **SNS COLLEGE OF TECHNOLOGY**

**An Autonomous Institution Coimbatore – 35** 

Accredited by NBA – AICTE and Accredited by NACC – UGC with 'A++ Grade Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai.

#### **DEPARTMENT OF AGRICULTURAL ENGINEERING**

#### **19AGB303 – IRRIGATION AND DRAINAGE ENGINEERING**

#### **III – YEAR VI SEMESTER**

#### **UNIT 1 – SOIL WATER TENSION AND MEASUREMENT OF SOIL WATER**

#### **TOPIC 4 – MEASUREMENT OF INFILTRATION – PERMEABILITY-DETERMINATION**

MEASUREMENT OF INFILTRATION - PERMEABILITY-DETERMINATION/19AGB303 IRRIGATION AND DRAINAGE ENGINEERING/Ms.R.MUTHUMINAL, AP/AGRI/SNSCT





### **MEASUREMENT OF INFILTRATION**

#### **Infiltrometer** is a device used to measure the rate of water

#### infiltration into soil.











## Single Ring Infiltrometer

- cylinder= (2 x diameter)
- is above the ground.
- inside the ring to indicate the water level to be maintained.
- corresponds to the infiltration capacity.
- water goes into the soil for a given time period.





□ This consists of a metal cylinder of diameter 25 cm to 30 cm and length of 50 cm to 60 cm, with both ends open. length of

□ It is driven into a level ground such that about 10 cm of cylinder

□ Water is poured into the top part to a depth of **5 cm** & pointer is set

□ The single ring involves driving a ring into the soil and supplying water in the ring either at constant head or falling head condition.

• Constant head refers to a condition where the amount of water in the ring is always held constant means the rate of water supplied

□ Falling head refers to a condition where water is supplied in the ring, which is allowed to drop with time. The operator records how much



# Disadvantages of single ring infiltrometer



- ✤ Thus



The major drawback of the single-ring infiltrometer or **tube infiltrometer** is that the infiltrated water percolates laterally at the bottom of the ring. the tube is not truly representing the area through which infiltration is taking place.



# **Double Ring Infiltrometer**

- $\succ$  This is the most commonly used flooding type infiltrometer. > It consists of two concentric rings driven into soil uniformly without disturbing the soil to the least to a depth of 15 cm. The diameter of rings may vary between 25 cm to 60 cm.
- An inner ring is driven into the ground, and a second bigger ring is around that to help control the flow of water through the first ring. Water is supplied either with a constant or falling head condition, and the operator records how much water infiltrates from the inner ring into the soil over a given time period.



# Double Ring Infiltrometer







**MEASUREMENT OF INFILTRATION – PERMEABILITY-DETERMINATION/19AGB303 IRRIGATION AND DRAINAGE ENGINEERING/Ms.R.MUTHUMINAL**, AP/AGRI/SNSCT





# Permeability

- Property of a soil which permits the flow of water
- Permeability is defined as the property of a porous material that permits the passage or seepage of water through its interconnecting voids.
- highly permeable Gravels • stiff clay  $\square$  least permeable











# **Permeability through soil is important for** the following engineering problems:

- **Calculation** of uplift pressure under hydraulic structure and their safety against **piping**.
- Ground water flow towards wells and drainage of soil.
- Calculation of seepage through the body of earth dams and **stability** of slopes.
- Determination of the rate of **settlement** of a saturated compressible soil layer.





# Flow of water through soils may either be a laminar flow or a turbulent flow

- Each fluid particle travels along a definite path • that never crosses the path of any other particle
- \*\* Paths are irregular and twisting, crossing at random









### **Coefficient of** Permeability

Depends not only on the properties of soil but also on the properties of water

# **Absolute permeability**

Independent of the properties of water

It depends only on the characteristics of soil.

The absolute permeability only depends on the geometry of the porechannel system.

**Relative permeability** is the ratio of effective permeability of a particular fluid to its absolute permeability.





### *Henry Darcy* (1803-1858), Hydraulic Engineer. His law is a foundation stone for several fields of study

### **Darcy's Law**

experimentally that for laminar who demonstrated conditions in a saturated soil, the rate of flow or the discharge per unit time is proportional to the hydraulic gradient q = vAv = kiq = kiA



# flow



# **Bernouli's Equation**:

- Total Energy = Elevation Energy + Pressure Energy + Velocity Energy
- Total Head = Elevation Head + Pressure Head + Velocity Head

$$H = z + \frac{v^2}{2g} + \frac{p}{\rho g}$$

• Total head of water in soil engineering problems is equal to the sum of the elevation head and the pressure head





# **Factors Affecting Permeability**

- Particle size
- Structure of soil mass
- Shape of particles
- Void ratio
- Properties of water
- Degree of saturation
- Adsorbed water
- Impurities in water











# **Constant Head Permeability Test**

- Quantity of water that flows under a given hydraulic gradient through a soil sample of known length & cross sectional area in a given time
- Water is allowed to flow through the cylindrical sample of soil under a constant head
- For testing of pervious, coarse grained soils  $k \square$

Aht

K = Coefficient of permeability

Q = total quantity of water

t = time

L = Length of the coarse soil







### Variable head permeability test

- Relatively for less permeable soils
- Water flows through the sample from a standpipe attached to the top of the cylinder.
- The head of water (h) changes with time as flow occurs through the soil. At different times the head of water is recorded.

$$k = \frac{2.30aL}{At} \log_{10} \frac{h_1}{h_2}$$

t = time





L = Length of the fine soil A = cross section area of soil

a= cross section area of tube

K = Coefficient of permeability



### **By Indirect Method**



constants.,a=1.365 b=5.15 c=value b/w 100 & 150 T= Tortuosity S = surface area

**MEASUREMENT OF INFILTRATION - PERMEABILITY-DETERMINATION/19AGB303 IRRIGATION AND DRAINAGE ENGINEERING/Ms.R.MUTHUMINAL, AP/AGRI/SNSCTc** 



#### Loudon's formula

### $\log_{10}(kS^2) = a + bn$

#### Consolidation test data

 $k = C_{v} \gamma_{w} m_{v}$ 



## **Reference Videos**



MEASUREMENT OF INFILTRATION – PERMEABILITY-DETERMINATION/19AGB303 IRRIGATION AND DRAINAGE ENGINEERING/Ms.R.MUTHUMINAL , AP/AGRI/SNSCT





### See You at Next Class!!!!

