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Waves in free space 

 

Electromagnetic waves can transport energy from one point to another point. The electric and 

magnetic field intensities asscociated with a travelling electromagnetic wave can be related to the 

rate of such energy transfer. 

 

Let us consider Maxwell's Curl Equations: 

 

 

Using vector identity 

 

 

the above curl equations we can write 

 

 

 

 

 

 

 

.............................................(6.35) 

 

In simple medium where and are constant, we can write 

 

Waves in free space, conductors, 

dielectrics 
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and 

 

Applying Divergence theorem we can write, 

 

...................... and magnetic fields and the term 

represents the power dissipation within the volume. Hence right hand side of the equation (6.36) represents the total 

decrease in power within the volume under consideration......(6.36) 

The term  represents the rate of change of energy 

stored in the electric  

 

The left hand side of equation (6.36) can be written as  

where  (W/mt
2
) is called the Poynting vector and it represents the power density vector 

associated with the electromagnetic field. The integration of the Poynting vector over any closed 

surface gives the net power flowing out of the surface. Equation (6.36) is referred to as Poynting 

theorem and it states that the net power flowing out of a given volume is equal to the time rate of 

decrease in the energy stored within the volume minus the conduction losses. 
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Definition 

For time harmonic case, the time variation is of the form  , and we have seen that instantaneous 

value of a quantity is the real part of the product 

of a phasor quantity and when  is used as reference. For example, if we consider the 

phasor 

 

 

then we can write the instanteneous field as 

 

 .................................(6.37) 

when E0 is real. 

Let us consider two instanteneous quantities A and B such that 

 

 

 

 

 

where A and B are the phasor quantities. i.e, 

 

 

Therefore, 

 

 

..............................(6.39) 
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Since A and B are periodic with period , the time average value of the product 

form AB, denoted by  can be written as 

 

 .....................................(6.40) 

Further, considering the phasor quantities A and B, we find that 

 

 

and  , where * denotes complex conjugate. 

 

..............................................(6.41) 

 

The poynting vector can be expressed as 

 

...................................(6.42) 

 

If we consider a plane electromagnetic wave propagating in +z direction and has only  

component, from (6.42) we can write: 

 

 

Using (6.41) 
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 ........................................(6.43) 

 

where and , for the plane wave under consideration. 

 

For a general case, we can write 

 

 .....................(6.44) 

We can define a complex Poynting vector 

 

 

and time average of the instantaneous Poynting vector is given by . 

5.1.1 Waves in loss dielectrics 

The polarisation of a plane wave can be defined as the orientation of the electric field 

vector as a function of time at a fixed point in space. For an electromagnetic wave, the 

specification of the orientation of the electric field is sufficent as the magnetic field 

components are related to electric field vector by the Maxwell's equations. 

 

Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey 

components. 

 

 

..........................................(6.45) 

 

The corresponding magnetic fields are given by, 
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Depending upon the values of Eox and Eoy we can have several possibilities: 

1. If Eoy = 0, then the wave is linearly polarised in the x-direction. 

2. If Eoy = 0, then the wave is linearly polarised in the y-direction. 

3. If Eox and Eoy are both real (or complex with equal phase), once again we get a linearly 

polarised wave with the axis of polarisation inclined at an 

angle , with respect to the x-axis. This is shown in fig 6.4. 

 

 

Fig 6.4 : Linear Polarisation 
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4. If Eox and Eoy are complex with different phase angles, will not point to a single 

spatial direction. This is explained as follows: 

 

Let  

 

Then, 

 

 

 

and  

....................................(6.46) 

 

 

To keep the things simple, let us consider a =0 and . Further, let us study the nature 

of the electric field on the z =0 plain. 

 

From equation (6.46) we find that, 

 

 

 

 .....................................(6.47) 

and the electric field vector at z = 0 can be written as 

 

 .............................................(6.48) 
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Assuming , the plot of for various values of t is hown in 

 

 

 

 

 

 

figure 6.5. 

 

Figure 6.5 : Plot of E(o,t) 

 

 

 

 

 

 

 

 

 

 

 

From equation (6.47) and figure (6.5) we observe that the tip of the arrow representing 

electric field vector traces qn ellipse and the field is said to be elliptically polarised. 

 

Figure 6.6: Polarisation ellipse 
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The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of 

semimajor to semiminor axis), tilt angle (orientation with respect to xaxis) and sense of 

rotation(i.e., CW or CCW). 

 

Linear polarisation can be treated as a special case of elliptical polarisation, for which the 

axial ratio is infinite. 

 

In our example, if , from equation (6.47), the tip of the arrow representing 

electric field vector traces out a circle. Such a case is referred to as Circular Polarisation. 

For circular polarisation the axial ratio is unity. 

 

 

Figure 6.7: Circular Polarisation (RHCP) 

 

Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) 

if the electric field vector rotates in the direction of the fingers of the right hand when the 

thumb points in the direction of propagation-(same and CCW). If the electric field vector 

rotates in the opposite direction, the polarisation is asid to be left hand circular 

polarisation (LHCP) (same as CW). 
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In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the 

field vertical to the ground( vertical polarisation) where as TV signals are horizontally 

polarised waves. FM broadcast is usually carried out using circularly polarised waves. 

 

In radio communication, different information signals can be transmitted at the same 

frequency at orthogonal polarisation ( one signal as vertically polarised other horizontally 

polarised or one as RHCP while the other as LHCP) to increase capacity. Otherwise, 

same signal can be transmitted at orthogonal polarisation to obtain diversity gain to 

improve reliability of transmission. 

 

5.1.2 in lossless dielectrics 

 

We have considered the propagation of uniform plane waves in an unbounded 

homogeneous medium. In practice, the wave will propagate in 

bounded regions where several values of  will be present. When plane wave 

travelling in one medium meets a different medium, it is partly reflected and partly 

transmitted. In this section, we consider wave reflection and transmission at planar 

boundary between two media. 

 

 

Fig 6.8 : Normal Incidence at a plane boundary 
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Case1: Let z = 0 plane represent the interface between two media. Medium 

1 is characterised by and medium 2 is characterized by  . 

Let the subscripts 'i' denotes incident, 'r' denotes reflected and 't' denotes transmitted 

field components respectively. 

  

The incident wave is assumed to be a plane wave polarized along x and 

travelling in medium 1 along direction. From equation (6.24) we can write 

 ..................(6.49.a) 

......................(6.49.b) 

where and . 

Because of the presence of the second medium at z =0, the incident wave will undergo 

partial reflection and partial transmission. 

 

The reflected wave will travel along in medium 1. 

The reflected field components are: 

 

...............................................(6.50a) 

 

 .........(6.50b) 
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 The transmitted wave will travel in medium 2 along for which the field components are 

 

  ............................................(6.51a) 

 

............................................(6.51b) 

 

where and  

and 

 

and in medium 2, 

 

and  
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Waves in conductors 

Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field 

components and noting that incident, reflected and transmitted field components are tangential 

at the boundary, we can write 

 

 

& 

 

From equation 6.49 to 6.51 we get, 

 

................................................................(6.52a) 

..............................................................(6.52b) 

Eliminating Eto , 

 

or,  

or,  

...............(6.53) 

is called the reflection coefficient. From equation (6.52), we can write 
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or, 

 

 

 

                                                ........................................(6.54) 

 

is called the transmission coefficient. We observe that, 

........................................(6.55) 

The following may be noted 

 

(i) both and T are dimensionless and may be complex 

 

(ii)  

 

 

 

 


