
Structure within a structure, structure pointer

SNSCT/ CSE Page 1

• Nested structure in C is nothing but structure within structure. One structure can be

declared inside other structure as we declare structure members inside a structure.

• The structure variables can be a normal structure variable or a pointer variable to access

the data. You can learn below concepts in this section.

1. Structure within structure in C using normal variable

2. Structure within structure in C using pointer variable

1. Structure within structure in C using normal variable:

• This program explains how to use structure within structure in C using normal variable.

“student_college_detail’ structure is declared inside “student_detail” structure in this

program. Both structure variables are normal structure variables.

• Please note that members of “student_college_detail” structure are accessed by 2 dot(.)

operator and members of “student_detail” structure are accessed by single dot(.) operator.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

#include <stdio.h>

#include <string.h>

struct student_college_detail

{

 int college_id;

 char college_name[50];

};

struct student_detail

{

 int id;

 char name[20];

 float percentage;

 // structure within structure

 struct student_college_detail clg_data;

}stu_data;

int main()

{

 struct student_detail stu_data = {1, "Raju", 90.5, 71145,

 "Anna University"};

 printf(" Id is: %d \n", stu_data.id);

 printf(" Name is: %s \n", stu_data.name);

 printf(" Percentage is: %f \n\n", stu_data.percentage);

 printf(" College Id is: %d \n",

 stu_data.clg_data.college_id);

 printf(" College Name is: %s \n",

 stu_data.clg_data.college_name);

Structure within a structure, structure pointer

SNSCT/ CSE Page 2

31

32

 return 0;

}

COMPILE & RUN

Output:

Id is: 1

Name is: Raju

Percentage is: 90.500000

College Id is: 71145

College Name is: Anna University

Structure within structure in C using pointer variable:

• This program explains how to use structure within structure in C using pointer variable.

“student_college_detail’ structure is declared inside “student_detail” structure in this

program. one normal structure variable and one pointer structure variable is used in this

program.

• Please note that combination of .(dot) and ->(arrow) operators are used to access the

structure member which is declared inside the structure.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#include <stdio.h>

#include <string.h>

struct student_college_detail

{

 int college_id;

 char college_name[50];

};

struct student_detail

{

 int id;

 char name[20];

 float percentage;

 // structure within structure

 struct student_college_detail clg_data;

}stu_data, *stu_data_ptr;

int main()

{

 struct student_detail stu_data = {1, "Raju", 90.5, 71145,

 "Anna University"};

Structure within a structure, structure pointer

SNSCT/ CSE Page 3

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 stu_data_ptr = &stu_data;

 printf(" Id is: %d \n", stu_data_ptr->id);

 printf(" Name is: %s \n", stu_data_ptr->name);

 printf(" Percentage is: %f \n\n",

 stu_data_ptr->percentage);

 printf(" College Id is: %d \n",

 stu_data_ptr->clg_data.college_id);

 printf(" College Name is: %s \n",

 stu_data_ptr->clg_data.college_name);

 return 0;

}

COMPILE & RUN

Output:

Id is: 1

Name is: Raju

Percentage is: 90.500000

College Id is: 71145

College Name is: Anna University

Pointer to a Structure in C

We have already learned that a pointer is a variable which points to the address of another

variable of any data type like int, char, float etc. Similarly, we can have a pointer to structures,

where a pointer variable can point to the address of a structure variable. Here is how we can

declare a pointer to a structure variable.

struct dog

{

 char name[10];

 char breed[10];

 int age;

Structure within a structure, structure pointer

SNSCT/ CSE Page 4

 char color[10];

};

struct dog spike;

// declaring a pointer to a structure of type struct dog

struct dog *ptr_dog

This declares a pointer ptr_dog that can store the address of the variable of type struct dog. We

can now assign the address of variable spike to ptr_dog using & operator.

ptr_dog = &spike;

Now ptr_dog points to the structure variable spike.

Accessing members using Pointer #

There are two ways of accessing members of structure using pointer:

 Using indirection (*) operator and dot(.) operator.

 1 .Using arrow (->) operator or membership operator.

Let's start with the first one.

Using Indirection (*) Operator and Dot(.) Operator #

At this point ptr_dog points to the structure variable spike, so by dereferencing it we will get the

contents of the spike. This means spike and *ptr_dog are functionally equivalent. To access a

member of structure write *ptr_dog followed by a dot(.) operator, followed by the name of the

member. For example:

(*ptr_dog).name - refers to the name of dog

Structure within a structure, structure pointer

SNSCT/ CSE Page 5

(*ptr_dog).breed - refers to the breed of dog

and so on.

Parentheses around *ptr_dog are necessary because the precedence of dot(.) operator is greater

than that of indirection (*) operator.

Using arrow operator (->) #

The above method of accessing members of the structure using pointers is slightly confusing and

less readable, that's why C provides another way to access members using the arrow (->)

operator. To access members using arrow (->) operator write pointer variable followed by ->

operator, followed by name of the member.

ptr_dog->name - refers to the name of dog

ptr_dog->breed - refers to the breed of dog

and so on.

Here we don't need parentheses, asterisk(*) and dot(.) operator. This method is much more

readable and intuitive.

We can also modify the value of members using pointer notation.

strcpy(ptr_dog->name, "new_name");

Here we know that the name of the array (ptr_dog->name) is a constant pointer and points to the

0th element of the array. So we can't assign a new string to it using assignment operator(=), that's

why strcpy() function is used.

--ptr_dog->age;

Structure within a structure, structure pointer

SNSCT/ CSE Page 6

In the above expression precedence of arrow operator (->) is greater than that of prefix

decrement operator (--), so first -> operator is applied in the expression then its value is

decremented by 1.

The following program demonstrates how we can use a pointer to structure.

#include<stdio.h>

struct dog

{

 char name[10];

 char breed[10];

 int age;

 char color[10];

};

int main()

{

 struct dog my_dog = {"tyke", "Bulldog", 5, "white"};

 struct dog *ptr_dog;

 ptr_dog = &my_dog;

 printf("Dog's name: %s\n", ptr_dog->name);

 printf("Dog's breed: %s\n", ptr_dog->breed);

 printf("Dog's age: %d\n", ptr_dog->age);

 printf("Dog's color: %s\n", ptr_dog->color);

Structure within a structure, structure pointer

SNSCT/ CSE Page 7

 // changing the name of dog from tyke to jack

 strcpy(ptr_dog->name, "jack");

 // increasing age of dog by 1 year

 ptr_dog->age++;

 printf("Dog's new name is: %s\n", ptr_dog->name);

 printf("Dog's age is: %d\n", ptr_dog->age);

 // signal to operating system program ran fine

 return 0;

}

Expected Output:

Dog's name: tyke

Dog's breed: Bulldog

Dog's age: 5

Dog's color: white

After changes

Dog's new name is: jack

Dog's age is: 6

