

Polyethylene (PE)

It is obtained by the polymerization of ethylene.

It involves Two steps:

Step 1: Ethylene gas is liquefied under high pressure (at 1500°C)

Step II:Liquefied ethylene is then pumped into a heated vessel maintained at 150 to 250°C in the presence of traces of oxygen as a catalyst

Polymerisation

$$nCH_2 = CH_2$$
 \rightarrow $-(CH_2-CH_2)_n-$

Properties

- 1. Polyethylene is a rigid, waxy white translucent nonpolar material
- 2. It is resistant towords strong acids and alkalis
- 3. It is very good insulator of electricity

There are two kinds of polyethylene

- I. Low Density Polyethylene (LDPE)
- II. High Density Polyethylene (HDPE)

LDPE:

S.No	Low Density Polyethylene (LDPE)	High Density Polyethylene (HDPE)
1	Prepared under high pressure using	Prepared under low pressure using
	oxygen as a catalyst	Ziegler Natta Catalyst
	It is branched polymer and 40%	It is completely linear polymer and
	crystalline	90% crystalline
	Density: 0.91-0.92 gms/ml	Density:0.965 gms/ml
	Melting point:110-125°C	Melting point-145-150°C
	At high temperature it is soluble in	Almost insoluble in all the solvent
	CCl ₄ ,toluene and xylene	
	Used for making films table cloth	Used for making toys pipes and

packing material etc.	detergent bottles etc

LDPE

HDPE

Ziegler Natta Catalyst

Polyvinyl Chloride (PVC)

Preparation:

Preparation of PVC involves the following two steps

Step 1: Vinyl Chloride is prepared by treating acetylene with hydrogen chloride at 60 to 80° C in the presence of metal chloride as catalyst.

$$C_2H_2 + HCI \rightarrow CH_2=CHCI$$
(Vinyl Chloride)

Step II: Poly vinyl Chloride is obtained by heating a water emulsion of vinyl chloride in the presence of s small amount of benzoyl peroxide or hydrogen peroxide in an autoclave under pressure.

Polymerization

$$nCH_2 = CHCl$$
 \rightarrow $-(CH_2-CHCl)_n-$

 H_2O_2

Vinyl Chloride Polyvinyl chloride

Properties:

PVC is non flammable, chemically inert powder.

It is colourless and odourless. It shows resistance to light and atmospheric oxygen

It is insoluble in inorganic acids and alkalis, but soluble in hot chlorinated hydrocarbons such as ethylchloride.

Uses: It is used for making sheets which are employed for tank lining, light fitting, safety helmets, refrigerator components, mudguards etc.,

It is used in the production of pipes, cable insulators, table covers, and rain coats etc.,