

SNS COLLEGE OF TECHNOLOGY

Coimbatore - 35

An Autonomous Institution

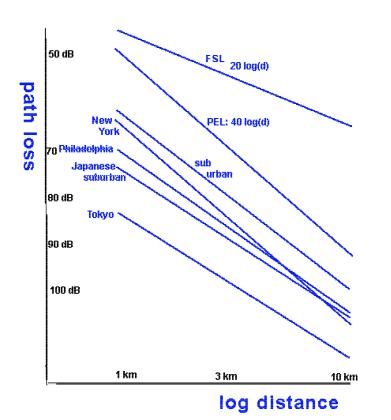
Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

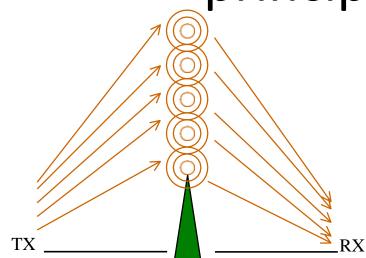
19ECT311 / Wireless Communication

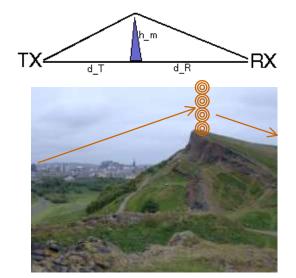
III ECE/ VI SEMESTER

Unit II - MOBILE RADIO PROPAGATION


Topic 4: Diffraction

Path Loss versus Distance




Diffraction loss: Huygens

principle

 h_m is the height of the obstacle, and d_t is distance transmitter - obstacle

 d_r is distance receiver - obstacle

Diffraction loss

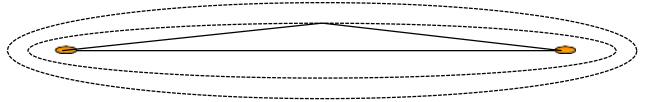
RX

d R

d T

The diffraction parameter v is defined as

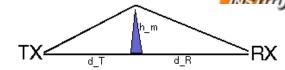
$$v = h_m \sqrt{\frac{2}{\lambda} \left(\frac{1}{d_t} + \frac{1}{d_r}\right)},$$


where

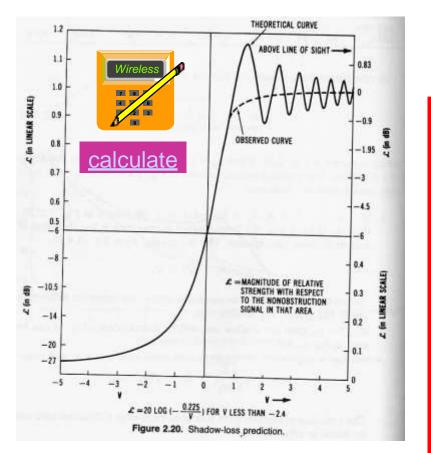
 h_m is the height of the obstacle, and

 d_t is distance transmitter - obstacle

d_r is distance receiver - obstacle


Fresnel zone: ellipsoid at which the excess path length is constant (e.g. $\lambda/2$)

Diffraction loss


The diffraction parameter v

$$v = h_m \sqrt{\frac{2}{\lambda} \left(\frac{1}{d_t} + \frac{1}{d_r}\right)},$$

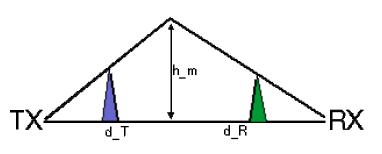
The diffraction loss L_d , expressed

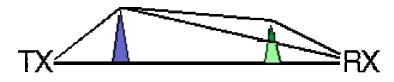
in dB, is approximated by

$$L_d = \begin{cases} 6 + 9v - 1.27v^2 & 0 < v < 2.4\\ 13 + 20\log v & v > 2.4 \end{cases}$$

ACTIVITY

Activity: Draw a logo which may describe your character or things you like.




Multiple knife

How to model multiple hills? Bullington

Deygout

Epstein

Typical terrain

Propagation models consider a full terrain profile

- multiple knife edges or rounded edges
- groundreflections

Micro-cellular models

Statistical Model

•At short range, R_c may not be close to -1. Therefor, nulls are less prominent than predicted by the simplified two-ray formula.

•UHF propagation for low antenna's ($h_t = 5 ... 10 m$)

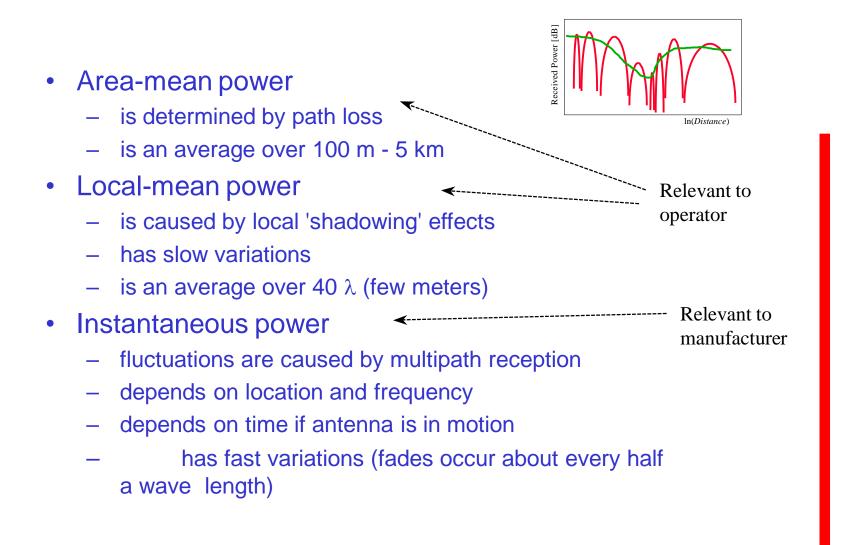
$$p = r^{-\beta_I} \left(I + \frac{r}{r_g} \right)^{-\beta_2}$$

Deterministic Models:

•Ray-tracing (ground and building reflection, diffraction, scattering)

Indoor Models

- Difficult to predict exactly
- Ray-tracing model prevail •
- Some statistical Models, e.g. • COST 2


COST 231: 800 MHz and 1.9 GHz					
Е	nvironment Expone	nt <i>n</i>	t <i>n</i> Propagation		
	Mechanism Corridors		1.4 - 1.9	Wave	
	guidance	uidance			
L	Largeropherocongns 2 3		3 Free space of the selfip ath		
	Densely furnished rooms	4	Non-LOS, diffr	action, scattering	

Losses during floor / wall traverses Between different floors 5


Statistical Fluctuations

Shadowing

- Local obstacles cause random shadow attenuation
- Model: Normal distribution of the received power
- P_{Log} in logarithmic units (such as dB or neper),
- Probability Density:

$$f_{\overline{p}}(\overline{p}) = \frac{1}{\sqrt{2\pi} \sigma \overline{p}} \exp\left\{\frac{1}{2\sigma^2} \ln^2\left(\frac{\overline{p}}{\overline{p}}\right)\right\},$$

where

σ is 'log. standard deviation' in neper ($σ_{dB}$ = 4.34 σ). P_{Log} = In [local-mean power / area-mean power

Assessment

- Link budget consists of calculation of
 - a) Useful signal power
 - b) Interfering noise power
 - c) Useful signal & Interfering noise power
 - d) Signal and Noise
- Link budget can help in predicting
 - a) Equipment weight and size
 - b) Technical risk
 - c) Prime power requirements
 - d) Equipment weight and size, Technical risk and Prime power requirements.
- Space loss occurs due to decrease in
 - a) Electric field strength
 - b) Efficiency
 - c) Phase
 - d) Signal power

Thank you