

SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution Coimbatore – 35

Accredited by NBA – AICTE and Accredited by NACC – UGC with 'A++ Grade Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai.

DEPARTMENT OF AGRICULTURAL ENGINEERING

19AGB303 – IRRIGATION AND DRAINAGE ENGINEERING

III – YEAR VI SEMESTER

UNIT 1 – SOIL WATER TENSION AND MEASUREMENT OF SOIL WATER

TOPIC 2 – SOIL WATER POTENTIAL CONCEPT, TOTAL, AND GRAVITATIONAL POTENTIAL

1/18/2024

SOIL WATER POTENTIAL CONCEPT, TOTAL, AND GRAVITATIONAL POTENTIAL/19AGB303 IRRIGATION AND DRAINAGE ENGINEERING/Ms.R.MUTHUMINAL, AP/AGRI/SNSCT

SOIL WATER POTENTIAL

➢It is defined as the potential energy of pure water, with no external forces acting on it, at a reference pressure (atmospheric), reference temperature, and reference elevation.

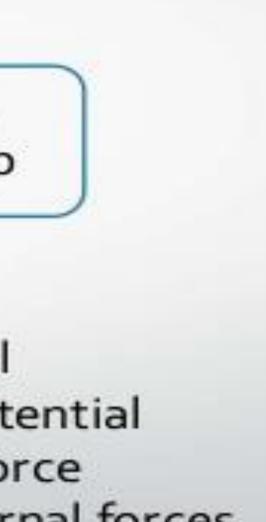
➢Soil water potential is then determined as potential energy per unit quantity of water, relative to the reference potential of zero.

Soil water potential can be expressed in three different units

Potential per unit mass (μ) : μ = potential/mass = gl (Nm/kg)

Potential per unit volume (ψ): ψ = potential/volume = $\rho_w Vgl / V = \rho_w gl (N/m^2)$, water pressure units)

Potential per unit weight (h) : h = potential/weight = mgl / mg = l (m, head unit)= equivalent height of water


Soil water potential

Soil water potential

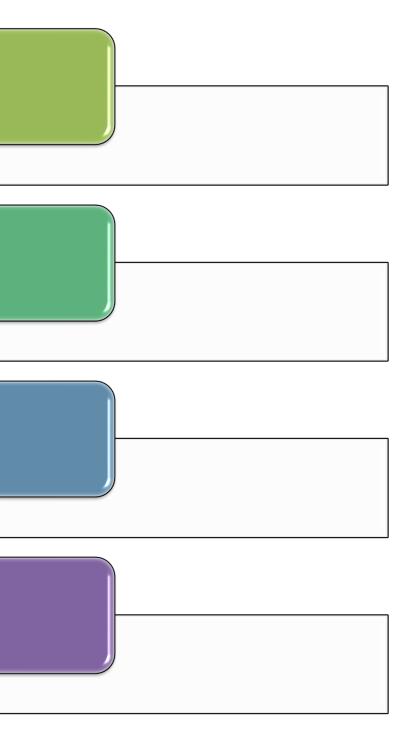
$$\Psi_{T} = \Psi_{z} + \Psi_{s} + \Psi_{m} + \Psi_{m}$$

Where Ψ_p = total potential Ψ_{r} = gravimetric potential Ψ_s = solute or osmotic potential Ψ_m = matric adsorption force Ψ_p = pressure due to external forces.

WATER POTENTIAL COMPONENTS!!!!

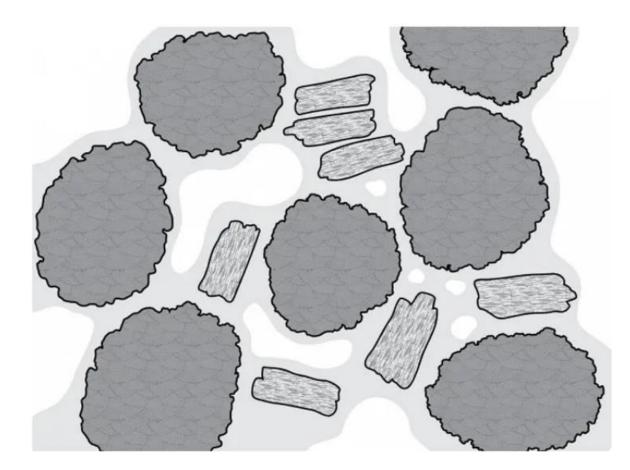
MATRIC

OSMOTIC


GRAVITATIONAL

PRESSURE

1/18/2024


SOIL WATER POTENTIAL CONCEPT, TOTAL, AND GRAVITATIONAL POTENTIAL/19AGB303 IRRIGATION AND DRAINAGE ENGINEERING/Ms.R.MUTHUMINAL, AP/AGRI/SNSCT

MATRIC POTENTIAL!!!!

1/18/2024

SOIL WATER POTENTIAL CONCEPT, TOTAL, AND GRAVITATIONAL POTENTIAL/19AGB303 IRRIGATION AND DRAINAGE ENGINEERING/Ms.R.MUTHUMINAL, AP/AGRI/SNSCT

As the soil absorbs water, it creates a water film that clings to the soil particles. The matric potential is what creates the water film

OSMOTIC POTENTIAL!!!!

Describes the dilution and binding of water by solutes that are dissolved in the water. This potential is always negative Can be calculated using

 $\Psi_0 = C\Phi VRT$

GRAVITATIONAL POTENTIAL!!!!

Arises because of water's location in gravitational field
This potential can be positive or negative
Can be calculated using

 $\Psi_G = GH$

PRESSURE POTENTIAL!!!!

It is hydrostatic or pneumatic pressure being applied to or pulled on the water This is more macroscopic effect acting throughout a larger region of the system It can be calculated using a

 $\Psi_{P} = P/P_{v}$

Reference Videos

1/18/2024

SOIL WATER POTENTIAL CONCEPT, TOTAL, AND GRAVITATIONAL POTENTIAL/19AGB303 IRRIGATION AND DRAINAGE ENGINEERING/Ms.R.MUTHUMINAL , AP/AGRI/SNSCT

See You at Next Class!!!!

1/18/2024

SOIL WATER POTENTIAL CONCEPT, TOTAL, AND GRAVITATIONAL POTENTIAL/19AGB303 IRRIGATION AND DRAINAGE ENGINEERING/Ms.R.MUTHUMINAL, AP/AGRI/SNSCT

