

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECE308- WIRELESS TECHNOLOGIES FOR IOT

III ECE / VI SEMESTER

UNIT 1 – OVERVIEW OF INTERNET OF THINGS

TOPIC 4 – Sources of IoT

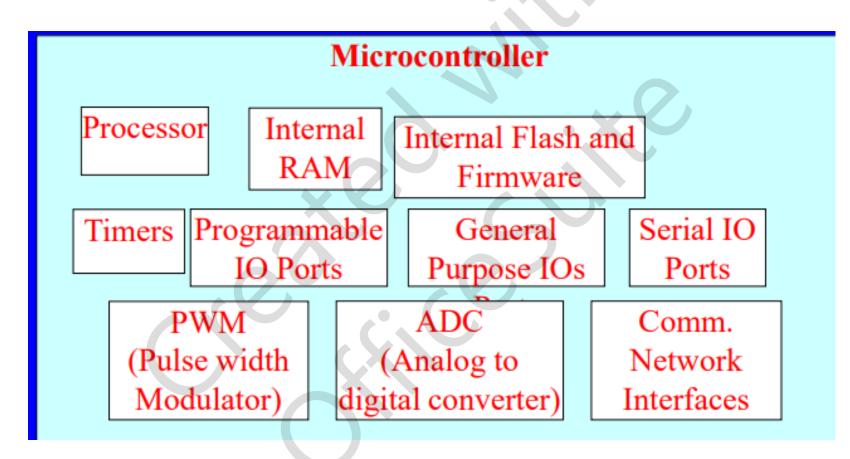
Sources of IoT

 Sensors and Control Units
 RFID
 WSNs
 Communication Modules and Software Development Tools

Analog Sensors: thermistor, photoconductor, pressure gauge and Hall sensor
Digital Sensors: touch sensor, proximity sensor, metal sensor, traffic
Procence sensor, retator encoder for

• Presence sensor, rotator encoder for measuring angles, linear encoders for measuring position

Control Unit



- Most commonly used control unit in IoT consists of a microcontroller unit (MCU) or
- •A custom chip or core in a VLSI or an SoC
- Popular microcontrollers: ATmega 328, ATMega 32u4, ARM Cortex and ARM LPC.

Control Unit

Arduino Boards

- E.g. Arduino Yún
- Using Microcontroller ATmega32u4
- Includes Wi-Fi, Ethernet, USB port, micro-SD card
- slot and three reset buttons
- Runs Linux

Intel Galileo

- Intel Galileo board
- A line of Arduino-certified development boards.
- Intel x86, Intel SOC X1000 Quark based System-On-Chip
- Power over Ethernet (PoE) and 6 Analog Inputs

BeagleBoard

- Very low power requirement
- Card like computer
- Can run Android and Linux
- Open source Hardware designs and the software for the IoT devices are

Raspberry Pi

- Wi-Fi-connected device
 Included code open cource Participation
- Included code open source RasWIK

2. RFID-Radio Frequency ID

- An identification system
- Tagging and labelling
- Tiny chips: passive, active and battery powered when reader nearby Wireless Communication range 10 cm to 200 m
- Standard frequency ranges: 120-150 kHz, 13.56 MHz, 433 MHz and higher in UHF and Microwave regions

RFID Applications

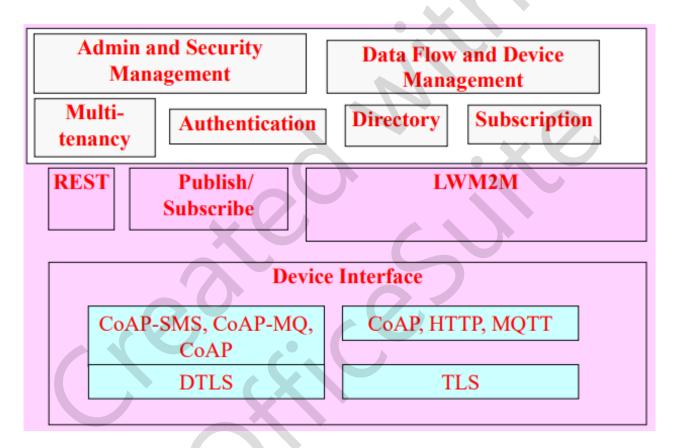
- •Tracking and inventory control
- Identification in supply chain systems
- Access to buildings and road tolls
- Secured store center entries
- Devices such as RFID based temperature sensors
- Applications in factory design, 3PL-management, brand protection, and anti-counterfeiting
- Business processes for payment, leasing, insurance, and quality management

3. WSNs

- Defined as a network in which each sensor node connect wirelessly
- Capabilities of computations
- Data compaction, aggregation and analysis
- Each with communication as well as networking capabilities.

• Autonomous: Independent computing power and capability to send requests and receive responses, and data forward and routing capabilities.

4: Communication Modules and Software Development Tools



- Device message-queue
- A device message-cache stores the received messages
- Protocol handlers: CoAP, HTTP, MQTT, TLS, DTLS LWM2M, CoAP-SMS, CoAP-MQ

Communication Module

Fig-mbed API and device interfacing component

Representational state transfer (REST) architectural style

- Used for HTTP access
- GET, POST, PUT and DELETE methods for the resources
- Building web services

Middleware

- OpenIoT (open source middleware)
- Communication with sensor clouds and Cloud-based 'sensing as a service
- IoTSyS middleware provisioning of communication stack for smart devices using IPv6, oBIX, 6LoWPAN
- CoAP and multiple standards and protocols. The oBIX is standard XML and web services
- Protocol oBIX (Open Building Information Xchange).

• Raspbian: a popular Raspberry Pi operating system Based on the Debian distribution of Linux.

• AllJoyn, open source OS created by Qualcomm Crossplatform OS with APIs available for Android, iOS, OS X, Linux

IoT Cloud PaaS and Server for Manage, Acquire, Organise and Analyse

Integration, Collaboration and processes and services

Application (Reporting, Analysis, control)

Edge Computing Data Analysis, Data Abstraction, Data Accumulation and Management

Connectivity (Communication and Processing Units)

Edge Computing

IoT device Hardware Physical devices and Controllers

The IOT software architecture

cloud Platforms as a Service

- Sense, ThingWorx, Nimbits, Xively,
- openHAB, AWS IoT, IBM BlueMix, CISCO IoT, IOx and Fog, EvryThng, Azure, TCS CUP

Summary

We learnt (i) Sensors, Control units, Microcontrollers (ii) Sources for the IoTs: Arduino, Intel Galileo, Raspberry Pi, BeagleBone, (iii) RFIDs, (iv) WSNs (v) Communication module and software development tools