

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35 Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

23EET101 / BEEE I YEAR / I SEMESTER

UNIT-4: ANALOG ELECTRONICS

DIODE

12/18/2023

TOPIC OUTLINE

- ✓ Introduction
- ✓ Diodes
- ✓ Electrical Properties of Solids
- ✓ Semiconductors
- ✓ PN Junctions
- ✓ Semiconductor Diodes
- ✓ Special-Purpose Diodes
- ✓ Diode Circuits

23EET101 / BEEE / S.SHARMILA / AP / EEE

12/18/2023

12/18/2023

Introduction

A diode is defined as a two-terminal electronic component that only conducts current in one direction (so long as it is operated within a specified voltage level).

An ideal diode will have zero resistance in one direction, and infinite resistance in the reverse direction.

Electrical Properties of Solids

Based on conductivity, materials are classified as

- Conductors
- Semiconductors
- Insulators

Valence Electrons – Electrons in outermost orbit of an atom. Good conductor – no. of valence electrons is 1 or 2.

Electrical Properties of Solids

• Conductors

- Good conductor of electricity
- e.g. copper or aluminum
- have a cloud of free electrons (at all temperatures above absolute zero). If an electric field is applied electrons will flow causing an electric current

• Insulators

- Poor conductor of electricity.
- e.g. polythene
- electrons are tightly bound to atoms so few can break free to conduct electricity

12/18/2023

Contd.,

Semiconductors

- Conductivity between two extremes.
- e.g. silicon or germanium
- at very low temperatures these have the properties of insulators
- as the material warms up some electrons break free and can move about, and it takes on the properties of a conductor
- however, semiconductors have several properties that make them distinct from conductors and insulators

7/15

12/18/2023

23EET101 / BEEE / S.SHARMILA / AP / EEE

23EE

Semiconductors

• Pure semiconductors

- thermal vibration results in some bonds being broken generating free electrons which move about
- these leave behind holes which accept electrons from adjacent atoms and therefore also move about
- electrons are **negative charge carriers**
- holes are positive charge carriers
- At room temperatures there are few charge carriers
 - pure semiconductors are poor conductors
 - this is intrinsic conduction

• Doping

- the addition of small amounts of impurities drastically affects its properties
- some materials form an excess of *electrons* and produce an *n*-type semiconductor
- some materials form an excess of *holes* and produce a *p*-type semiconductor
- both *n*-type and *p*-type materials have much greater conductivity than pure semiconductors
- this is **extrinsic conduction**

23EET101 / BEEE / S.SHARMILA / AP / EEE

12/18/2023

INTRINSIC SEMICONDUCTORS

12/18/2023

12/18/2023

12/18/2023

Assessment

- **1**. Which among the following is the most commonly used semiconductor?
- a. Silicon
- b. Carbon
- c. Germanium
- d. Sulphur
- 2. A semiconductor has generally valence electrons.
- a. 2
- b. 3
- c. 6
- d. 4

12/18/2023

...THANK YOU

12/18/2023