

DEPARTMENT OF COMPUTER APPLICATIONS

19CAE716 – DATA SCIENCE

UNIT – IV – DEEP LEARNING

TOPIC: CONVOLUTIONAL NETWORKS

Convolutional networks

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?

Consider learning an image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

me pattern appears in different places: hey can be compressed!

What about training a lot of such "small" detectors and each detector must "move around".

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

These are the network parameters to be learned.

-1 -1 Filter 1 -1 -1 1 -1 -1 1 -1 -1 1 Filter 2 -1 -1 1

-1

6 x 6 image

Each filter detects a

small pattern (3 x 3). Convolutional Networks /Priyanga S/AP/MCA/SNSCT

-1

1

Filter 1

stride=1

6 x 6 image

Filter 1

If stride=2

3 -3

6 x 6 image

1 -1 -1 -1 1 -1 -1 -1 1

Filter 1

6 x 6 image

stride=1

Repeat this for each filter

6 x 6 image

Two 4 x 4 images Convolutional Networks /PriyangaFS/ARI/MC2A/SAISC4 matrix

Subsampling pixels will not change the object bird

We can subsample the pixels to make image fewer parameters to characterize the image Convolutional Networks /Priyanga S/AP/MCA/SNSCT CNN compresses a fully connections network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

is a channel

The following is quotation from their Nature article:

Note: AlphaGo does not use Max Pooling.

Neural network architecture. The input to the policy network is a $\underline{19 \times 19 \times 48}$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a <u>rectifier nonlinearity</u>. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves *k* filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

$oldsymbol{S} \in \mathbb{R}^{d imes |s|}$ embedding dimension $oldsymbol{F} \in \mathbb{R}^{d imes m}$

sentence convolutional pooled softmax matrix representation feature map $\pmb{c}_{\mathrm{pool}} \in \mathbb{R}^{1 imes n}$ $oldsymbol{C} \in \mathbb{R}^{n imes |s| - m + 1}$ 1 LOVE MY new hone Source of image: .` http://citeseerx.ist.psu.edu/viewdoc/downlo ad?doi=10.1.1.703.6858&rep=rep1&type=p Convolutional Networks /Priyanga S/AP/MCA/SNSCT