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 We know it is good to learn a small model.

 From this fully connected model, do we really need all 

the edges? 

 Can some of these be shared?

Convolutional networks
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Consider learning an image:

Some patterns are much smaller than 

the whole image

“beak” detector

Can represent a small region with fewer parameters
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Same pattern appears in different places:

They can be compressed!

What about training a lot of such “small” detectors

and each detector must “move around”.

“upper-left 

beak” detector

“middle beak”

detector

They can be compressed

to the same parameters.
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A convolutional layer

A filter

A CNN is a neural network with some convolutional layers 

(and some other layers).  A convolutional layer has a number 

of filters that does convolutional operation. 

Beak detector
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Convolution
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0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

……

These are the network 

parameters to be learned.

Each filter detects a 

small pattern (3 x 3). 
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Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1

stride=1

Dot 

product
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Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -3

If stride=2
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Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1
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Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature

Map
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Color image: RGB 3 channels
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Filter 2
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Color image
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1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

image
convolution

-1 1 -1

-1 1 -1

-1 1 -1

1 -1 -1

-1 1 -1

-1 -1 1

1x

2x

……

36x

……
1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-

connected
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1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
1
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…

8
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…

1
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…

Only connect to 

9 inputs, not 

fully connected
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0

0

0

1

1

3

fewer parameters!
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1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

1:

2:

3:

…

7:

8:

9:
…

1

3:14:

15:

…

4:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

-1

Shared weights

6 x 6 image

Fewer parameters

Even fewer parameters
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The whole CNN

Fully Connected 

Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can 

repeat 

many 

times
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Max Pooling

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
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Why Pooling

 Subsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image 

smaller
fewer parameters to characterize the image
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A CNN compresses a fully connected 

network in two ways:

Reducing number of connections

Shared weights on the edges

Max pooling further reduces the complexity
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Max Pooling

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 0

13

-1 1

30

2 x 2 image

Each filter 

is a channel

New image 

but smaller

Conv

Max

Pooling
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The whole CNN

Convolution

Max Pooling

Convolution

Max Pooling

Can 

repeat 

many 

times

A new image

The number of channels 

is the number of filters

Smaller than the original 

image

3 0

13

-1 1

30
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The whole CNN

Fully Connected 

Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

A new image

A new image
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Flattening

3 0

13

-1 1

30 Flattened

3

0

1

3

-1

1

0

3

Fully Connected 

Feedforward network
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Only modified the network structure and 

input format (vector -> 3-D tensor)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

input

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

There are 

25 3x3

filters.

…

…

Input_shape = ( 28 , 28 , 1)

1: black/white, 3: RGB28 x 28 pixels

3 -1

-3 1

3
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Only modified the network structure and 

input format (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5

How many parameters for 

each filter?

How many parameters

for each filter?

9

225=

25x9
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Only modified the network structure and 

input format (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5
Flattened

1250

Fully connected 

feedforward network

Output
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AlphaGo

Neural

Network
(19 x 19 

positions)

Next move

19 x 19 matrix

Black: 1

white: -1

none: 0

Fully-connected feedforward 

network can be used

But CNN performs much better
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AlphaGo’s policy network

Note: AlphaGo does not use Max Pooling.

The following is quotation from their Nature article:
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CNN in speech recognition

Time

F
re

q
u
e
n
c
y

Spectrogram

CNN

Image

The filters move in the 

frequency direction.
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CNN in text classification

Source of image: 

http://citeseerx.ist.psu.edu/viewdoc/downlo

ad?doi=10.1.1.703.6858&rep=rep1&type=p

df

?
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