SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Accredited by NBA - AICTE and Accredited by NAAC - UGC with
‘A++’ Grade Approved by AICTE, New Delhi & Affiliated to Anna
University, Chennai

DEPARTMENT OF COMPUTER APPLICATIONS
DATA SCIENCE
I YEAR - III SEM
UNIT - IV DEEP LEARNING

TOPIC : DEEP FEEDFORWARD NETWORKS AND
REGULARIZATION

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

LLTTIT I TIOrS

OVERVIEW

* Neural network

* Perceptron

* Regularization
¢ L2/L1/elastic

* Activation functions * Dropout

* Back-propagation

Batch normalization

Data augmentation

Early stopping

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

Input layer

hidden layer 1 hidden layer 2

“I-laver neural net” or * 2-hidden-lavers neural net”

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

v
N
-
%A
&
-

J
)
=
p

IMpulsas camed
towarg call boagy

branches,
f L/

dendrites < v of o e
<(;}\ f
4 -~ \)
anon

NEURON (UN |T) e — e L)~ wion

(BMINSs
vl N
= I\ P Nt
71 \‘._ impuises camed L\
; 1N
' away llomcelbody N

(R C‘C‘IJ‘"

£) wy

*® synapse
axon from a neuron
Wy

cell body

Z w;&; +0 | f >
output axon

i

activation
function

Unit-1V/Deeplearning/Priyanga

PERCEPTRON FORWARD PASS

Output = f(

Inputs weights sum

T
0.1
25 |
(-1*2.5)+ ‘
30
(1*3.0) ‘
Dias

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

activation function

. output

PERCEPTRON FORWARD PASS

Inputs weights sum

Output = f(2.2)
=0(2.2) ' o
1 ‘ 0.5 .
s s S0 25 .
1+e~22 @
. t)'m;

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

‘,'1'?]'- :

. N b

s,f\l' A
TIONS

activation function

. output

MULTI-OUTPUT PERCEPTRON

Input layer Output layer

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

MULTI-OUTPUT PERCEPTRON

Input layer Output layer

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

MULTI-LAYER PERCEPTRON (MLP)

Input layer
..
n
..

Qutput layer

+ by
e
¢ hy
L
P
g

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

DEEP NEURAL NETWORK

Input layer

ho hg

hl hl
LA AL L)

h? hz

3 hS h;

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

Output layer

() Bachfed ot Col

. Memory (il
. O ot M i

reere

O Lomretiaton or Poal

A mostly complete chort of

Neural Networks

Pervootron (V) foed Formm [1F) Aachal B tetwverh (RIU

A ’_ |
2 . B 3 &

Feewrrent Newr o Netoartrk [RNN) Long Dot Term Me=a
e ‘9

d.' |l.\ l'l 0'

8" so0

Aulo Erocer (N Youturnal N IV Deronurg A

http://www.asimovinstitute org/neuraknetwerkzoo;

Q 9“
g

s,&ﬁ.},.
g &

y (LSTM) Gt Recurrent Unet {GAL)

000
‘$ 60

LI rIruTIons

UNIVERSAL APPROXIMATION THEOREM

“A feedforward network with a linear output layer and at least one hidden layer with any ‘squashing’
activation function (such as the logistic sigmoid) can approximate any Borel measurable function from one
finite-dimensional space to another with any desired nonzero amount of error, provided that the netwaork
is given enough hidden units.”

¢ v Hornik et al., Cybenko, 1989

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

Wn’/rm/vs

Z=x*y

H=relu(WX + b)
=max(0, WX + b)

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

LOSS FUNCTION

* Aloss function (cost function) tells us how good our current model is, or
how far away our model to the real answer.

N
| : :
L(w) = NZ loss (f (x'V; w), y©)
i

predicted actual

N = # examples
* Hinge loss
+ Softmax loss
+ Mean Squared Error (L2 loss) = L{w) = 7:-2{" (f(x":w) - y(”)z
+ Cross entropy Loss = L(w) = ;:-E?’[y“’log[(x“’;w) +(1- y“’)log(l - f(x“’;w))]
o) L Unit-1V/Deeplearning/Priyanga

S/AP/MCA/SNSCT

W?IONS

GRADIENT DESCENT
* Designing and training a neural network is not much different from training
any other machine learning model with gradient descent: use to get
derivatives of the loss function respect to each parameter.
dL(w)
%= Ty
J

@ is learning rate

it-IV/Deeplearning/Priyanga
S/AP/MCA/SNSCT

GRADIENT DESCENT

* In practice, instead of using all data points, we do
» Stochastic gradient descent (using 1 sample at each iteration)
* Mini-Batch gradient descent (using n samples at each iteration)

* Ifloss changes quickly in one direction and slowly in another = jitter along steep direction
* |floss function has a local minima or saddle point = zero gradient, SGD gets stuck

Wiutions:

* 5GD + momentum, etc
Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

BACK-PROPAGATION

* |t allows the information from the loss to flow backward through
the network in order to compute the gradient.

- L(w)

dL(w)
aw,

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

BACK-PROPAGATION

* |t allows the information from the loss to flow backward through
the network in order to compute the gradient.

i)

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

BACK-PROPAGATION

* |t allows the information from the loss to flow backward through
the network in order to compute the gradient.

Wy

hy - L(w)

aL(w) 500 = Chain rule

aWZ (71

Unit-1IV/Deeplea
S/AP/MCA/SNSCT

BACK-PROPAGATION

* |t allows the information from the loss to flow backward through
the network in order to compute the gradient.

- L(w)

dL(w)
oWy

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

BACK-PROPAGATION

* |t allows the information from the loss to flow backward through
the network in order to compute the gradient.

Wy

- L(w)

oL(w) 00, == Chain rule
= e

0w, ahy..

Unit-1V/Deeplearning
S/AP/MCA/SNSCT

BACK-PROPAGATION

* |t allows the information from the loss to flow backward through
the network in order to compute the gradient.

- L(w)

L (w) 00, Ohy e Chain rule
§ K ——

0w, Ohg.. 0w,

Unit-1V/Deeplearning
S/AP/MCA/SNSCT

BACK-PROPAGATION: SIMPLE EXAMPLE

f,y,2) = (x+y)z
eg.x=-2,y=5,2=-4

d d
g=x+y £=1,£=1

Chain Rule; Chain Rule;

of of of of _0fdq Oof _ofdq

Want: 'a_x’ ‘a_y' ‘a_z Unit-lV/DeepIearany/P-ri-y.anaEay -a-; b %ax

S/AP/MCA/SNSCT

ngavﬂzzm»ms

ACTIVATION FUNCTIONS

Importance of activation functions is to introduce into the netwaork.

£() W
*® synapse

axon from a neuron
WL

f(}:lﬂr,'b)

—®
OuiDUt axon

activation
function

Wn’/rw/vs

ACTIVATION FUNCTIONS

Sigmoid Leaky ReLU For output layer:
() = max(().1z,) + Sigmoid
‘ |46~ "
* Softmax

* Tanh
tanh Maxout |
lilllh(.lf) nlu.\'(u'l’ T+ b, u';f T+

For hidden layer:
* RelU

* LeakyRelU

* ELU

ReLU ELU
max((,) '

@;ﬂn’/rw/vs

ACTIVATION FUNCTIONS

O.

Sigmoid

o(z)=1/(1+e7%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

@;ﬂn’/rw/vs

ACTIVATION FUNCTIONS

O.

Sigmoid

o(z)=1/(1+e7%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

L dadl oL

do Oxdo

* What happens when x=-10?
* What happens when x = 07?
* What happens when x =10

+e™*

wsvm‘/rm/vs

@;ﬂn’/rw/vs

ACTIVATION FUNCTIONS

O.

Sigmoid

o(z)=1/(1+e7%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

aprm’mozvs

allowed
Qradient
A update
+ b 6L 01, d}‘ girections
fO) wixitb) 3-=33, »
: Zig zag path
l 7 : allowed
= *2 gradient
update
directions
What can we say about the gradients on w? hypothetical
® optimal w

vector

Inefficient!

@;ﬂn’/rw/vs

ACTIVATION FUNCTIONS

O.

Sigmoid

o(z)=1/(1+e7%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

WTIONS

ACTIVATION FUNCTIONS

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated

Wn’/rw/vs

- Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient
- Converges much faster than
kT - | sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible

RelU than sigmoid
(Rectified Linear Unit)

@;ﬂn’/rw/vs

- Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient
- Converges much faster than
kT - | sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible

ReLU than sigmoid
(Rectified Linear Unit)

@;ﬂn’/rw/vs

ACTIVATION FUNCTIONS

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)

e g)=o)

backprop into \alpha
(parameter)

ACTIVATION FUNCTIONS

Exponential Linear Units (ELU)

- All benefits of RelL.U

- Closer to zero mean outputs

- Negative saturation regime
compared with Leaky ReLU TS
adds some robustness to noise

| T x>0 : '
{(2) = . - Computation requires exp()

alexple)=1) ifr<0

MAXOUT “NEURON”

- Does not have the basic form of dot product ->
nonlinearity

- Generalizes ReLU and Leaky RelL.U

- Linear Regime! Does not saturate! Does not die!

max(wf:c T bl,wgaz T bg)

Problem:; doubles the number of parameters/neuron ;(

Wn’/rw/vs

IN PRACTICE (GOOD RULE OF THUMB)

* For hidden layers:
* Use RelU, Be careful with your learning rates
* Try out Leaky ReLU / Maxout / ELU

* Try out tanh but don’t expect too much

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

REGULARIZATION

* Regularization is “any modification we make to the
learning algorithm that is intended to reduce the
generalization error, but not its training error”.

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

REGULARIZATION

N
1 . .
L(W) = NZ L; (f(x(‘); W), y(‘))

Data loss: model predictions
should match training data

| Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

REGULARIZATION

L(W) = NZL xO;w),y®) + AR(W)

Data loss: model predictions Regularization: Model
should match training data Should be “simple”, so it
works on test data

s B/ Occam'’s Razor:

g “Among competing hypotheses,
-\ \ e ”

The simplest is the best
William of Ockham, 1285-1347

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

REGULARIZATION

N
1
LW =NZL, (f(x0;w),y0) + AR(W)
* In common use: :

* L2 regularization R(w) = Zwf

L1 regularization R(w) = Z|w|

Elasticnet (L1+12) R(w) = S(8w? +)

Dropout

Batch normalization

Data Augmentation

Early Stopping

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

Weights dist W;g

UTIONS

No regularization

L2 REGULARIZATION

LW) == Z((VW) y ") + AZwf

+ penalizes the square value of the weight (which explains also the “2"
from the name),

* tends to drive all the weights to smaller values, L2 regularization

Weights dist W;g

UTIONS

No regularization

L1 REGULARIZATION

L(W)= N’Zl W), y) + Ayl

+ penalizes the absolute value of the weight (v- shape function)

* tends to drive some welghts to exactly zero (introducing sparsity In the

model), while allowing some weights to be big L1 regularization

Wn’/rm/vs

DROPOUT

In each forward pass, randomly set
some neurons to zero, Probability of
dropping Is a hyperparameter; 0.5 s
common,

You can imagine that if neurons are
randomly dropped out of the network
during training, that other neurons will
have to step in and handle the
representation required to make
predictions for the missing neurons,
This Is believed to result in multiple
independent internal representations
being learned by the network,

@srm‘/r/ozvs

DROPOUT

Another interpretation:

* Dropout Is training a large ensemble of models (that
share parameters)

* Each binary mask is one model

(n) Standard Newral Net (b) After applying dropout

An fully connected layer with 4096 units has
290960102433 possible masks!
geson i /) Gily ~10%* atoms in the universe.,

Qywﬁwmm

Dense

\ N7 L\

~5'o<6

'//.n,-tﬁ.‘ Q
A

‘ ' . Regularize Re<Dense
A

q

B B m—— B

Less Model Capacity Larger Model Capacity
Same Accuracy Higher Accuracy

https://arxiv.org/pdf/1607.04381v1.pdf

BATCH NORMALIZATION

"you want unit Gaussian activations? Just make them so.”

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize
,F(k) B E[.r“')]

.T.(k) =

Usually inserted after fully
connected or convolutional layers,
and before nonlinearity.

byt §

,0 masabmdlma&bnha.ﬁnwm ,
 and slightly reduces the need for dropout, maybe

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

@;ﬂn’/rw/vs

DATA AUGMENTATION

The best way to make a machine learning model generalize better is to train it on more data,

Load image
and label/
—p

A
-
¥ D

Aot "
o Wl B
) %
.

Az

’

% 3
s

@;ﬂn’/rw/vs

DATA AUGMENTATION

The best way to make a machine learning model generalize better s to train it on more data,

Load image
and label

DATA AUGMENTATION

Horizontal flips

Color Jitter
+ Simple: Randomize
contrast and brightness

Get creative for your problem!
* Translation

* Rotation

* Stretching

* Shearing

* |ens distortions

* (gocrazy)

EARLY STOPPING

It is probably the most commonly used form of
regularization in deep learning to prevent overfitting:
+ Effective
* Simple

Think of this as a hyperparameter selection
algorithm. The number of training steps is another
nyperparameter.

Wn’/rw/vs

Validation set

Training set

Number of
stopping ilerations
point

REFERENCE

* Deep Learning book —-- http://www.deeplearningbook.org/
+ Stanford CNN course - http://cs231n.stanford.edu/index.html

* Regularization in deep learning - https://chatbotslife com/regularization-in-deep-learning f649a45d6e0

* So much more to learn, go explore!

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

* THANK YOU

Unit-1V/Deeplearning/Priyanga
S/AP/MCA/SNSCT

