	R	leg.No:				
	SNS College of Tech (Auto B.E/B.Tech- Inte Academic Year Fifth S DEPARTMENT OF COMPUTE ANSW 19CSB301 – AUTOMATA THE	nology, Coimbatore-35. nomous) ernal Assessment -I : 2023-2024(ODD) Semester R SCIENCE AND ENGINEERING VER KEY EORY AND COMPILER DESIGN	B			
	Time: 1 ^{1/2} Hours	Maximum Mar	ks: 50			
Answer All Questions						
PART-A (5 x 2 = 10 Marks)						
1.	Write the Rules for Type 0 and Type 2 Gra	mmar in Chomsky Hierarchy	CO1	UND		
	Type 0: $bAa \rightarrow aa$, $S \rightarrow s$					
	Type 2:					
	$A \rightarrow aBb$					
	$A \rightarrow b$					
	$B \rightarrow a$					
2.	List the cousins of compiler		CO1	UND		
	Preprocessor, Assembler, Linker & Loader					
3.	Differentiate NFA and DFA		CO1	ANA		
	DFA	NFA				
	DFA stands for Deterministic Finite Automata.	NFA stands for Nondeterministic Finite Automata.				
	For each symbolic representation of the alphabet, there is only one state transition in DFA.	No need to specify how does the NFA reac according to some symbol.	:			
	DFA cannot use Empty String transition.	NFA can use Empty String transition.				
	DFA can be understood as one machine.	NFA can be understood as multiple little machines computing at the same time.				
4.	Construct the DFA for $0 (0+1)^*$		CO1	ANA		

5. Define Sentinel

Sentinels – Sentinels are **used to making a check**, each time when the forward pointer is converted, a check is completed to provide that one half of the buffer has not converted off. If it is completed, then the other half should be reloaded.

PART-B (13 X 2 = 26 Marks)

6. (a) Construct DFA equivalent to NFA N={(p,q,r,s), (0,1), S, p, 13 CO1 APP (s)}, where S is defined as

S	0	1
р	{p,q}	{p}
q	{r}	{r}
r	{s}	-
S	{s}	{s}

CO2 REM

- (or)
- (b) Explain how Pushdown Automata is more powerful than 13 CO1 ANA Finite automata with its formal and graphical representation. Construct the Pushdown Automata for Language $L = \{0^n 1^n | n \ge 0\}$

7. (a) Elaborate the various phases of compiler and trace it with the 13 CO2 APP program segment (a=b+c*5)

(b)

Find the minimized DFA for the given DFA13CO1ANA

- 8. (a) Construct the Regular Expression, DFA & NFA which accepts a 14 CO1 APP string over {0,1} / {a,b}
 - i. Set of strings that has exactly one a
 - ii. set of strings that has atmost 1a
 - iii. set of strings that has atleast 1a

iv. set of strings that start with 0 and end with 11

(or)

(b) Outline on following:

(ii) Buffer pair for sentinels

Two pointers to the input are maintained:

Pointer **lexemeBegin**, marks the beginning of the current lexeme, whose extent we are attempting to determine.

Pointer **forward** scans ahead until a pattern match is found; the exact strategy whereby this determination is made will be covered in the balance of this chapter.

