
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST251 & Object Oriented Programming using C++ By Mrs Devi G

Exception Handling

C++ Standard Exceptions

C++ provides a list of standard exceptions defined in <exception> which we can use in our programs.

These are arranged in a parent-child class hierarchy shown below −

Here is the small description of each exception mentioned in the above hierarchy –

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST251 & Object Oriented Programming using C++ By Mrs Devi G

Sr.No Exception & Description

1

std::exception

An exception and parent class of all the standard C++ exceptions.

2

std::bad_alloc

This can be thrown by new.

3

std::bad_cast

This can be thrown by dynamic_cast.

4

std::bad_exception

This is useful device to handle unexpected exceptions in a C++ program.

5

std::bad_typeid

This can be thrown by typeid.

6

std::logic_error

An exception that theoretically can be detected by reading the code.

7

std::domain_error

This is an exception thrown when a mathematically invalid domain is used.

8

std::invalid_argument

This is thrown due to invalid arguments.

9

std::length_error

This is thrown when a too big std::string is created.

10

std::out_of_range

This can be thrown by the 'at' method, for example a std::vector and std::bitset<>::operator[]().

11

std::runtime_error

An exception that theoretically cannot be detected by reading the code.

12

std::overflow_error

This is thrown if a mathematical overflow occurs.

13

std::range_error

This is occurred when you try to store a value which is out of range.

14

std::underflow_error

This is thrown if a mathematical underflow occurs.

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST251 & Object Oriented Programming using C++ By Mrs Devi G

Define New Exceptions

You can define your own exceptions by inheriting and overriding exception class functionality.

Following is the example, which shows how you can use std::exception class to implement your own

exception in standard way −

#include <iostream>

#include <exception>

using namespace std;

struct MyException : public exception {

 const char * what () const throw () {

 return "C++ Exception";

 }

};

int main() {

 try {

 throw MyException();

 } catch(MyException& e) {

 std::cout << "MyException caught" << std::endl;

 std::cout << e.what() << std::endl;

 } catch(std::exception& e) {

 //Other errors

 }

}

This would produce the following result −

MyException caught

C++ Exception

Here, what() is a public method provided by exception class and it has been overridden by all the child

exception classes. This returns the cause of an exception.

