
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST251 & Object Oriented Programming using C++ By Mrs Devi G

Function Templates

Function Templates We write a generic function that can be used for different data types. Examples of

function templates are sort(), max(), min(), printArray().

Function Template:

• Generic functions use the concept of a function template. Generic functions define a set of

operations that can be applied to the various types of data.

• The type of the data that the function will operate on depends on the type of the data passed as a

parameter.

• For example, Quick sorting algorithm is implemented using a generic function, it can be

implemented to an array of integers or array of floats.

• A Generic function is created by using the keyword template. The template defines what

function will do.

•
Template is a simple yet very powerful tool in C++.

• The simple idea is to pass data type as a parameter so that we don’t need to write the same code

for different data types.

• For example, a software company may need to sort() for different data types.

• Rather than writing and maintaining multiple codes, we can write one sort() and pass data type
as a parameter.
C++ adds two new keywords to support templates: ‘template’ and ‘typename’.

• The second keyword can always be replaced by the keyword ‘class’.

#include <iostream>

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST251 & Object Oriented Programming using C++ By Mrs Devi G

using namespace std;

// One function works for all data types. This would work

// even for user defined types if operator '>' is overloaded

template <typename T> T myMax(T x, T y)

{

 return (x > y) ? x : y;

}

int main()

{

 cout << myMax<int>(3, 7) << endl; // Call myMax for int

 cout << myMax<double>(3.0, 7.0)

 << endl; // call myMax for double

 cout << myMax<char>('g', 'e')

 << endl; // call myMax for char

 return 0;

}

Output

7

7

g

