
UNIT III Notes

Schema Refinement

Schema Refinement (also called as Normalization) is a technique of organizing the data in the

database. It is a systematic approach of decomposing tables to eliminate data redundancy and

undesirable characteristics like Insertion, Update and Deletion Anomalies. Here Redundancy

refers to repetition of same data or duplicate copies of same data stored in the Database.

Redundancy is at the root of several problems associated with relational schemas. Integrity

constraints, in particular functional dependencies, can be used to identify schemas with such

problems and to suggest refinements.

One of the main refinement technique is decomposition (replacing ABCD with, say, AB and

BCD, or ACD and ABD).

Decomposition

Decomposition is a process of decomposing a larger relation into smaller relations. Each of

smaller relations contain subset of attributes of original relation.

Anomalies refers to the problems occurred during database operations because of poorly

planned and normalised databases.

Types of decomposition

Loseless decomposition

It is a process of decomposing relation into two or more

relations and ensures that

 No information is lost during decomposition

 When the sub relations are joined back, the same relation

is obtained that was decomposed

For Example,

Consider a relation R is decomposed into R1 and R2

R = (A, B, C) // R has three attributes namely A, B and C

R1 = (A, B) // R1 has two attributes namely A and B

R2 = (B, C) // R2 has two attributes namely B and C

 common attribute B must be a super key of sub relations

either R1 or R2

 if it contains a duplicate value then the Lossless-join

decomposition is not possible

 R1U R2 is same as tuples of R, it is loseless decomposition

Lossy decomposition

 Consider there is a relation R which is decomposed into

sub relations R1 , R2 , …. , Rn.

 This decomposition is called lossy join decomposition

when the join of the sub relations does not result in the

same relation R that was decomposed

 For lossy join decomposition, we always have

R1 ⋈ R2 ⋈ R3 ……. ⋈ Rn ⊃ R where ⋈ is a natural join

operator

Functional Dependency

Functional dependency in DBMS refers to the relationship between attributes in a database

table. Functional dependency is a form of integrity constraint that can identify schema with

redundant storage problems and to suggest refinement. It typically exists between the primary

key and non-key attribute within a table which would be denoted by

X → Y

For example, Emp_Id → Emp_Name where employee name is dependent on employee id.

Armstrong axioms defines the set of rules for reasoning about functional dependencies and

also to infer all the functional dependencies on a relational database.

Rule -1:

Augmentation
 PR -> QR, if P -> Q

 If P holds Q and R is a set of attributes, then PR holds QP

Rule -2:

Reflexivity
 P -> Q, if Q is a subset of P

 If P is a set of attributes and Q is a subset of P, then P holds Q

Rule -3:

Transitivity
 If P -> Q and Q -> R, then P -> R i.e. a transitive relation

Rule -4: Union If P→Q and P→ R then P → QR

 If P holds Q and P holds R then P holds QR

Rule -5:

Decomposition
 If P→ QR then P→Q and P → R

 If P holds QR and P holds Q then P holds R

Types of functional dependencies

 Trivial functional dependency:-If X

these type of FD’s called as trivial functional dependency.

 Non-trivial functional dependency:-

non-trivial functional dependency.

 Completely non-trivial functional dependency:-

called completely non-trivial functional dependency.

Prime and non-prime attributes

Attributes which are parts of any candidate key of relation are called as prime attribute, others

are non-prime attributes.

Candidate Key:

Candidate Key is minimal set of attributes of a relation which can be used to identify a tuple

uniquely. Types of candidate keys:

1. simple(having only one attribute)

2. composite(having multiple attributes as candidate key)

Super Key:

Super Key is set of attributes of a relation which can be used to identify a tuple uniquely

Dependency preservation

It ensures

 None of the functional dependencies that holds on the original relation are lost.

 The sub relations still hold or satisfy the functional dependencies of the original

relation.

Normalization:

Normalization is a process of designing a consistent database with minimum redundancy which

support data integrity by grating or decomposing given relation into smaller relations

preserving constraints on the relation.

Normalisation removes data redundancy and it will helps in designing a good data base which

involves a set of normal forms as follows -

1. First normal form(1NF)

2. Second normal form(2NF)

3. Third normal form(3NF)

4. Boyce coded normal form(BCNF)

5. Forth normal form(4NF)

6. Fifth normal form(5NF)

7. Sixth normal form(6NF)

8. Domain key normal form.

Advantages of normalization

o Helps to minimize data redundancy.

o Provides greater overall database organization.

o Ensure data consistency within the database.

o Much more flexible database design.

o Allows to enforce the concept of relational integrity.

Disadvantages

 We cannot start building the database before knowing what the user needs.

 The performance degrades when normalizing the relations to higher normal forms, i.e.,

4NF, 5NF

 it is time-consuming and difficult to normalize relations of a higher degree

 Careless decomposition may lead to a bad database design

First normal form (1 NF):

A relation is said to be in first normal form if it contains all atomic values. An attribute of a

table cannot hold multiple values. It must hold only single-valued attribute.

For example, in the employee table, phone no has multiple values, against 1 NF

Emp_ID Emp_name Phone_no State

A101 John 123456789

157856511

TN

A102 Hari 2548796

7598456

KA

Now 1 NF is ensured by organizing

Emp_ID Emp_name Phone_no State

A101 John 123456789 TN

A101 John 157856511 TN

A102 Hari 7598456 KA

A102 Hari 2548796 KA

Second normal form

A relation is said to be in second normal form if it is in first normal form and all non-key

attributes are fully functional dependent on the primary key.

For example

Example: Student

id

Student name Project Id Project name

Here (student id, project id) are key attributes and (student name, project name) are non-prime

attributes. It is decomposed as two table namely student and project

Student id Student name Project id

Project id Project name

Third normal form (3 NF)

A relation is said to be in third normal form , if it is already in second normal form and no

transitive dependencies exists. A relation is in 3NF if at least one of the following condition

holds in every non-trivial function dependency X –> Y

1. X is a super key.

2. Y is a prime attribute (each element of Y is part of some candidate key).

For example,

"Customer City" is transitively dependent on the primary key. That is, it depends on "Customer

ID", which is not part of the primary key, instead of depending directly on the primary key

"Order ID"

Boyce normal form (BCNF)

It applies to tables with more than one candidate key. A relation is in BCNF if every

determinant in the table is a candidate key. ie LHS is super key. If a table contains single

candidate key, the 3NF and BCNF are equivalent.

A relation is in BCNF if in every non-trivial functional dependency X –> Y, X is a super key

For Example,

Emp_id Name Dept_id Qualification Salary

E102 Hari SA01 BE 25000

E104 Kumar SB01 BE 21400

The table has 3 determinates: Emp_id, Dept_id and qualification, and (Emp_id , Dept_id) is

candidate keys. So it is not in BCNF.

It is divided into salary and employee table

Emp_id Dept_id Salary

E102 SA01 25000

E104 SB01 21400

Emp_id Name Qualification

E102 Hari BE

E104 Kumar BE

Fourth normal form (4NF)

When attributes in a relation have multi-valued dependency, further Normalization to 4NF and

5NF are required. Let us first find out what multi-valued dependency is

A multi-valued dependency is a typical kind of dependency in which each and every attribute

within a relation depends upon the other, yet none of them is a unique primary key.

We illustrate this with an example. Consider a vendor supplying many items to many projects

in an organization. The following are the assumptions:

1. A vendor is capable of supplying many items.

2. A project uses many items.

3. A vendor supplies to many projects.

4. An item may be supplied by many vendors

A multi valued dependency exists here because all the attributes depend upon the other and yet

none of them is a primary key having unique value.

Vendor_id Item_id Project_id

V101 IX01 P01

V102 IX02 P01

V101 IX01 P02

V103 IX03 P02

Item IX01 is duplicated here and if item is not finalized for vendor, it would be empty

The problem is reduced by expressing this relation as two relations in the Fourth Normal Form

(4NF).

A relation is in 4NF if it has no more than one independent multi valued dependency or one

independent multi valued dependency with a functional dependency.

In the example, vendor relation is decomposed into vendor_item and vendor_project relations

and ensures in 4 NF

Vendor_id Item_id

V101 IX01

V102 IX02

V101 IX01

V103 IX03

Join Dependencies and 5th Normalization Form (5 NF)

Join Dependencies

A relation is said to have join dependency if it can be recreated by joining multiple sub

relations and each of these sub relations has a subset of the attributes of the original relation.

If the join of R1 and R2 over Q is equal to relation R then we can say that a join

dependency exists, where R1 and R2 are the decomposition R1 (P, Q) and R2 (Q, S) of a given

relation R (P, Q, S). R1 and R2 are a lossless decomposition of R.

5th Normalization Form (5 NF)

It is a generalization of Multi Valued Dependency. A relation is said to have join

dependency if it can be recreated by joining multiple sub relations and each of these sub

relations has a subset of the attributes of the original relation.

Vendor_id Project_id

V101 P01

V102 P01

V101 P02

V103 P02

A relation is in 5NF if it is in 4NF and not contains any join dependency and joining

should be lossless. 5NF is satisfied when all the tables are broken into as many tables as

possible in order to avoid redundancy. 5NF is also known as Project-join normal form (PJ/NF).

Suppose if the join of R1 and R2 over Q is equal to relation R then we can say that a

join dependency exists, where R1 and R2 are the decomposition R1 (P, Q) and R2 (Q, S) of a

given relation R (P, Q, S). R1 and R2 are a lossless decomposition of R

For example, a vendor has the following attributes

Supplier Product Consumer

XX1 A1 Cons1

XX2 A2 Cons2

There is join dependency exists in this table, therefore it is not in 5NF. Now it is reduced into

three relation namely supplier_product, consumer_product and supplier_cosnumer. So when

these three relations are joined, original vendor table can be restored.

Let us finally summarize the normalization steps we have discussed so far.

1 NF A relation is in 1NF if it contains an atomic value.

2 NF A relation will be in 2NF if it is in 1NF and all non-key attributes

are fully functional dependent on the primary key.

3 NF A relation will be in 3NF if it is in 2NF and no transition

dependency exists.

Boyce-codd (BCNF) A stronger definition of 3NF is known as Boyce Codd's normal

form.

4 NF A relation will be in 4NF if it is in Boyce Codd's normal form and

has no multi-valued dependency.

5 NF A relation is in 5NF. If it is in 4NF and does not contain any join

dependency, joining should be lossless.

