~» L.
I oS

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

COURSE NAME :23CST101 PROBLEM SOLVING AND C PROGRAMMING
| YEAR/ | SEMESTER

UNIT-111 ARRAYS AND STRINGS

Topic: Strings

Dr.B.Vinodhini
Assoclate Professor
Department of Computer Science and Engineering

C Strings

The string can be defined as the one-dimensional array of characters terminated by a null ("\0'). The character array or the string is used
to manipulate text such as word or sentences. Each character in the array occupies one byte of memory, and the last character must

always be 0. The termination character ("\Q') is important in a string since it is the only way to identify where the string ends. When we
define a string as char s[10], the character s[10] is implicitly initialized with the null in the memory.

String is a set of characters enclosed in double quotation marks. In C programming, the string is a character array of

single dimension.

For example: The string "hello world" contains 12 characters including '\e' character which is automatically added by the
compiler at the end of the string.

C Strings JE

There are two ways to declare a string in ¢ language.

1. By char array

2. By string literal

Let's see the example of declaring string by char array in C language.

char Ch[10]={ljl, lal’ IVI’ Ial, ltl, lpl’ lol’ liI, lnl’ ltI, I\Ol};

As we know, array index starts from 0, so it will be represented as in the figure given below.

01 2 3 45 6 7 8 9 10

jla|v|/a|t|plo|i|n| t|\0

C Strings

While declaring string, size is not mandatory. So we can write the above code as given below:

char_ Ch[] {'I 1 'I 1 I I I 1 'I 1 'Ipl.'I I 1 - I 'I 1 'I 1 'I\D }FI

We can also define the string by the string literal in C language. For example:

char ch[]="javatpoint";

In such case, "\0' will be appended at the end of the string by the compiler.

STl

C Strings

Difference between char array and string literal

There are two main differences between char array and literal,

o We need to add the null character '\0' at the end of the array by ourself whereas, it is appended internally by the compiler in the

case of the character array.

o The string literal cannot be reassigned to another set of characters whereas, we can reassign the characters of the array.

SHTIronls

C Strings

String Example in C

Let's see a simple example where a string is declared and being printed. The '%s’ is used as a format specifier for the string in ¢ language.

#include<stdio.h>

#include <string.h>

int main(){
char ch[11]={"', 'a", 'v', 'a', 't', 'p’, 'o', ', 'n", 't", "\0'};
char ch2[11]="javatpoint”;

printf("Char Array Value is: %s\n", ch);
printf("String Literal Value is: %s\n", ch2);

return 0;

b

C Strings JE

Output

Char Array Value 1s: javatpoint

String Literal Value 1s: javatpoint

Traversing String

Traversing the string is one of the most important aspects in any of the programming languages. We may need to manipulate a very large
text which can be done by traversing the text. Traversing string is somewhat different from the traversing an integer array. We need to

know the length of the array to traverse an integer array, whereas we may use the null character in the case of string to identify the end
the string and terminate the loop.

Hence, there are two ways to traverse a string.

o By using the length of string

o By using the null character.

SHTIronls

Traversing String

Using the length of string

Let's see an example of counting the number of vowels in a string.

#include<stdio.h>

void main ()

1
char s[11] = "javatpoint”;
inti = 0;
int count = 0;

while(i<11)

1
if(slil=="a’ || s[i] == "e' || s[il == "1" || slil == "u’ || s[i]l == "07)
{
count ++4;
¥
i++;
¥

printf("The number of vowels %%d”,count);

-~

Traversing String

Output

The number of vowels 4

N -~

Traversing String

Using the null character

Let's see the same example of counting the number of vowels by using the null character.

#include<stdio.h>

void main ()

1
char s[11] = "javatpoint”;
inti = 0;
int count = 0;
while(s[i] '= NULL)
{
if(s[il=="a" || s[il == "e’ || s[i] == "1" || s[i] == "u’ || s[i] == "0’)
{
count ++;
be
i++;
s
printf("The number of vowels %d",count);
¥

Arrays & Strings / 19CST101-Programming for Problem Solving /Selvakumar N/CSE/SNSCT

-~

Traversing String

Output

The number of vowels 4

,\?g Accepting string as the input

Till now, we have used scanf to accept the input from the user. However, it can also be used in the case of strings but with a different
scenario. Consider the below code which stores the string while space is encountered.

#include<stdio.h>
void main ()
{
char s[20];
printf("Enter the string?");
scanf("%s",s);

printf("You entered %s",s);

Accepting string as the input

Output

Enter the string?javatpoint is the best

You entered javatpoint

It is clear from the output that, the above code will not work for space separated strings. To make this code working for the space
separated strings, the minor changed required in the scanf function, i.e., instead of writing scanf("%s",s), we must write: scanf("%
[M\n]s",s) which instructs the compiler to store the string s while the new line (\n) is encountered. Let's consider the following example to

store the space-separated strings.

SHTIronls

Accepting string as the input

#include<stdio.h>

void main ()

{
char s[20];

printf("Enter the string?");
scanf("%/[~\n]s",s);

printf("You entered %s",s);

Output

Enter the string?javatpoint is the best

You entered javatpoint is the best

Here we must also notice that we do not need to use address of (&) operator in scanf to store a string since string s is an array of

characters and the name of the array, i.e., s indicates the base address of the string (character array) therefore we need not use & with it.

71~
AN Vi,

¢ BEY >

L)
r\y/ Trarionts

L,

08/02/2021 Arrays / 19CST101-Programming for Problem Solving /Narmada C/CSE/SNSCT

