WAVE FUNCTION

A variable quantity which characterizes de Broglie waves is known as wave function and is denoted by the symbol . The value of the wave function associated with a moving particle at point (x,y,z) and time 't' gives the probability of finding the particle at that time and at that point.

PHYSICAL SIGNIFICANCE OF WAVE FUNCTION

The wave function has **no physical meaning**.

□ It is a **complex quantity** representing the matter **wave of a particle**.

 $|\psi|^2$ is **real and positive**, amplitude may be positive or negative but the intensity(square of amplitude) is always real and positive.

 $| \psi |^2$ represents the probability density or probability of finding the particle in the given region.

\Box For a given volume d, probability **P** = $\int \int \int |\psi|^2 d$ where d = dx dy dz

The probability value lies between 0 and 1.

 $\Box_{\text{S}} = 1, \text{ this wave function is called normalized wave function.}$

SCHROEDINGER'S WAVE EQUATION

□ Austrian scientist, **Erwin Schroedinger**

- describes the wave nature of a particle , derived in mathematical form
- connected the expression of De-Broglie wavelength with classical wave equation
- □ two forms of **Schroedinger's wave equation**
- Time Independent wave equation
 Time dependent wave equation

SCHROEDINGER'S TIME INDEPENDENT WAVE EQUATION

Let us consider a system of stationary wave associated with a **moving particle.** Let be the wave function of the particle along x, y and z coordinates axes at any time t.

The differential wave equation of a progressive wave with wave velocity 'u' can be written in terms of Cartesian coordinates as,

$$\frac{d^2\psi}{dx^2} + \frac{d^2\psi}{dy^2} + \frac{d^2\psi}{dz^2} = \frac{1}{v^2} \frac{d^2\psi}{dt^2} \qquad \frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2\psi}{\partial t^2} \dots (1)$$

The solution of eqn(1) is

$$\psi = \psi_{0} e^{-i\omega t}$$

Differentiating the above equation with respect to time 't' twice,

$$\frac{\partial \psi}{\partial t} = -i\omega\psi_{0}e^{-i\omega t} = -i\omega\psi \qquad \frac{\partial^{2}\psi}{\partial t^{2}} = -\omega^{2}\psi....(2)$$
Substituting (2) in (1)
$$\frac{\partial^{2}\psi}{\partial t^{2}} + \frac{\partial^{2}\psi}{\partial y^{2}} + \frac{\partial^{2}\psi}{\partial y^{2}} = -\frac{-i\omega}{2}$$
Mr.M.Sriram/ AP / Physics

SCHROEDINGER'S TIME INDEPENDENT WAVE EQUATION

$$\omega = 2\pi\nu \qquad \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{-4\pi^2 \nu^2 \psi}{V^2}$$
substituting $V = \nu\lambda$

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{-4\pi^2 \nu^2 \psi}{\nu^2 \lambda^2} \qquad \lambda = \frac{h}{mV}$$

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{-4\pi^2 m^2 V^2 \psi}{h^2}$$
total energy $E = \frac{1}{2}mV^2 + V$

$$2m(E - V) = m^2 V^2$$

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{-8\pi^2 m(E - V)\psi}{h^2} \qquad \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \nabla^2, \text{ where } \nabla \text{ is Laplacian Operator}$$

$$\nabla^2 \psi = \frac{-8\pi^2 m(E - V)\psi}{h^2} \Rightarrow \frac{-2m}{\hbar^2} (E - V)\psi \qquad \text{sin } ce\hbar = \frac{h}{2\pi}$$

$$\nabla^2 \psi + \frac{2m}{\hbar^2} (E - V)\psi = 0 \text{ (Time independent Schroedinger wave eqn)} \qquad 4$$

SCHROEDINGER'S TIME DEPENDENT WAVE EQUATION

The solution of the classical differential eqn. of wave system is, Differentiating the above equation with respect to time 't' ,

$$\frac{\partial \psi}{\partial t} = -i\omega \psi_{0} e^{-i\omega t} = -i\omega \psi$$

Substituting E=h $\omega = 2\pi v$

$$\frac{\partial \psi}{\partial t} = -i2\pi v \psi = -i2\pi \left(\frac{E}{h}\right) \psi$$
$$\frac{\partial \psi}{\partial t} = -i2\pi v \psi = -i \left(\frac{E}{\hbar}\right) \psi = -i^2 \left(\frac{E}{i\hbar}\right) \psi \quad \sin ce\hbar = \frac{h}{2\pi}$$
$$E\psi = i\hbar \frac{\partial \psi}{\partial t}$$

 $\nabla^{2}\psi + \frac{2m}{\hbar^{2}}(E - V)\psi = 0$ (*Time independent Schroedinger wave eqn*) $\nabla^{2}\psi + \frac{2m}{\hbar^{2}}E\psi - \frac{2m}{\hbar^{2}}V\psi = 0$ ^{23PYT101 / Engineering Physics / Mr.M.Sriram/ AP / Physics} $\psi = \psi_{0} e^{-i\omega t}$

SCHROEDINGER'S TIME DEPENDENT WAVE EQUATION

$$\nabla^{2}\psi + \frac{2m}{\hbar^{2}}i\hbar\frac{\partial\psi}{\partial t} - \frac{2m}{\hbar^{2}}V\psi = 0$$

multiply throughout by $\frac{\hbar^{2}}{2m}$
 $\frac{\hbar^{2}}{2m}\nabla^{2}\psi + E\psi - V\psi = 0$
 $-\frac{\hbar^{2}}{2m}\nabla^{2}\psi + V\psi = E\psi$ (Time dependent Schroedinger wave eqn)

The Hamiltonian operator

$$H = -\frac{\hbar^2}{2m}\nabla^2 + V$$

 $H\psi=\!\!E\psi$

E = energy operator