Density of holes in raleme band:-

$$
\begin{equation*}
n_{h}=\int_{-\infty}^{E_{V}} z(E)[1-F(E)] \cdot d E \tag{3}
\end{equation*}
$$

$F(E) \rightarrow$ Probability of filled state
$1-F(E) \rightarrow$ Probability of untilled state
we know, $z(E) \cdot d E=\frac{\pi}{2}\left(\frac{8 m_{h}}{h^{2}}\right)^{3 / 2}\left(E_{V}-E\right)^{1 / 2} \cdot d E$

$$
\begin{align*}
1-F(E) & =1-\frac{1}{1+e^{\left(E-E_{f}\right) \mid K_{B} T}}  \tag{9}\\
& =\frac{e^{\left(E-E_{F}\right) \mid K_{B} T}}{1+e^{\left(E-E_{f}\right) \mid K_{B} T}}
\end{align*}
$$

Here, $E-E_{F} \ll k_{B} T ; \quad \frac{E-E_{f}}{k_{B} T} \ll 1 ; e^{\frac{\left(E-E_{F}\right)}{k_{B T}} \ll 1}$
So,

$$
\begin{align*}
& \text { So, } 1+e^{\left(E-E_{f}\right) \mid K_{B} T} \approx 1 \\
& \therefore 1-F(E)=e^{\left(E-E_{F}\right) \mid K_{B} T} \tag{10}
\end{align*}
$$

substitute equations (a) and (10) in (8)

$$
\begin{equation*}
n_{h}=\frac{\pi}{2}\left(\frac{8 m_{h}^{*}}{h^{2}}\right)^{3 / 2} \int_{\infty}^{E_{V}}(E v-E)^{1 / 2} e^{\left(E-E_{P}\right) \mid \& T} \cdot d E \tag{II}
\end{equation*}
$$

Let $E_{V}-E=x k_{B} T$

$$
\begin{array}{cc|l}
E-E=x K_{B} T \\
E=E_{V}-x k_{B} T & \Rightarrow \text { when } E=-\infty & E=E_{V} \\
A E=-d x K_{B} T & x=\infty & x=0
\end{array}
$$

So Limits are $\otimes 0$,

$$
\begin{aligned}
& \text { So equation Q becomes, } \\
& \qquad \begin{aligned}
& n_{h}=\frac{\pi}{2}\left(\frac{8 m_{h}^{x}}{h^{2}}\right)^{3 / 2} \int_{\infty}^{0}\left(x k_{B} T\right)^{1 / 2} e^{\frac{\left(E_{v}-x k_{3} T, E_{f}\right)}{k_{3} T}} \cdot(-d x) k_{B} T \\
&=\frac{\pi}{2}\left(\frac{8 m_{h}^{k}}{h^{2}}\right)^{3 / 2} \int_{0}^{\infty} x^{1 / 2}\left(k_{2} T\right)^{3 / 2} e^{\left(E_{v}-E_{f}\right) \mid k_{3} T} \\
& n_{h}=\frac{\pi}{2}\left(\frac{8 m_{h}^{x} k_{3} T}{h^{2}}\right)^{3 / 2} \cdot e^{\left(E_{V}-E_{f}\right) \mid k_{3} T} \cdot \int_{0}^{-x} \cdot d x \\
& x^{1 / 2} \cdot e^{-x} \cdot d x \\
& 1 / 1 / \sqrt{n /}
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{4}\left(\frac{8 \pi m_{h}^{*} k_{B} T}{h^{2}}\right)^{3 / 2} \cdot e^{\left(E_{\gamma}-E_{F}\right)\left(k_{3} T\right.} \\
& n_{h}=\frac{8}{4}\left(\frac{2 \pi m_{h}^{2} K_{B} T}{h^{2}}\right)^{3 / 2}-e^{\left(E_{V}-E_{4}\right) \mid K_{B} T^{3 / 2}=8 \sqrt{8}}=8 \times 2 \sqrt{2} . \\
& 8 \times\left(2^{3 / 2}\right) \\
& n_{h}=2\left(\frac{2 \pi m_{h}{ }^{4} k_{3} T}{h^{2}}\right)^{3 / 2} e^{\left(E_{r}-E_{f}\right) k_{3} T} \tag{12}
\end{align*}
$$

equation (2) is the density of thales in valance--hand.

Variation of Fermi level and Carrier concertiotion with temperature in an intrinsic seoricondwctor

For intrinsic semiconductor number of eloctrits (i-e.n) electron density will be the same as the of number of holes (i-e.,) hole density.

$$
i-e, n e=n h
$$

Frit $\oplus$ and (1) ;

$$
\begin{aligned}
& 2\left(\frac{2 \pi m_{c}^{*} k_{n} T}{h^{2}}\right)^{3 / 2} e^{\left(E_{F}-E_{C}\right) \|_{\gamma_{3} T}}=2\left(\frac{\partial \pi h_{h}^{T} k_{3} T}{h^{2}}\right)^{3 / 2} e^{\left.\left(E_{V}-E_{E}\right)\right|_{B} T} \\
& \left(m_{c}^{*}\right)^{3 b_{2}}\left(\frac{m_{h}^{x}}{m_{e}^{*}}\right)^{3 / 2}=\frac{e^{\left(E_{f}-E_{c}^{\prime}\right)} \mid k_{3} T}{e^{\left(E_{v}-E_{c}\right) \mid k_{3} T}} \\
& \left(\frac{m_{h}^{*}}{m_{e}^{*}}\right)^{3 / 2}=e^{\left(E_{F}-E_{c}-E_{V}+E_{F}\right) k_{n} T}
\end{aligned}
$$

Takin los on roth sides,

$$
\begin{aligned}
& \text { in los on both sides, } \\
& \frac{3}{2} \operatorname{lig}\left(\frac{m_{h}^{i}}{m_{e}^{*}}\right)=\frac{\left(2 E_{F}-\left(E_{V}+E_{c}\right)\right)}{k_{B} T} \\
& 2 E_{F}=E_{V}+E_{C}+\frac{3}{2} k_{B} T \operatorname{los}\left(\frac{m_{h}^{e}}{m_{e}^{k}}\right)
\end{aligned}
$$

$$
\begin{equation*}
E_{F}=\frac{E_{e}+E_{V}}{2}+\frac{3}{4} k_{3} T \operatorname{los}\left(\frac{m_{n}^{*}}{m_{c}^{2}}\right) \tag{1}
\end{equation*}
$$

It $m_{h}^{x}=m_{e}^{x}$, then, $\operatorname{los} \frac{m_{n}^{\prime}}{m_{2}^{*}}=0 \quad[\because \operatorname{los} 1=0]$

$$
E_{f}=\frac{E_{c}+E_{v}}{2}
$$

i.e., Fermilevel lies in the midway bitwean $E_{c}$ and $E_{r}$ (at $T=o_{k}$ ). But Fermilerel slishty -- increases with increase in temperature.

CB -corbution Ve-valens had

Density of electrons and holes inters
of $E_{5}$ :-
Interns of Energy $\operatorname{sap}\left(\xi=E_{c}-E_{V}\right)$, we Can get the expression of $h_{e}$ and $h_{h}$ bu subsiulitus the value of $E_{f}$ interns of $E_{L}$ and $E_{V}$.

$$
\begin{aligned}
& h_{e}=2\left(\frac{2 \pi m_{e}^{k} k_{3} T}{h^{2}}\right)^{3 / 2} e^{\left(E_{F}-E_{C}\right)} \text {. } \xi_{S} T \\
& n_{e}=2\left(\frac{2 \pi m_{2} k_{3} T}{h^{2}}\right)^{3 / 2} \text {. } \\
& \exp \left[\frac{\frac{E_{c}+E_{v}}{2}+\frac{3}{4} k_{c} T \operatorname{les}\left(\frac{m_{c}^{*}}{m_{k}^{*}}\right)-\varepsilon_{c}}{k_{c} T}\right] \\
& =2\left(\frac{2 \pi m_{e}^{k} k_{3} t}{h^{2}}\right)^{3 / 2} \exp \left[\frac{2 E_{e}+2 E_{i}+3 k_{s} T \log ^{2}\left(\frac{N_{k}^{*}}{m_{z}^{*}}\right)-4 E_{c}}{4 k_{s} T}\right]
\end{aligned}
$$

