Performance consideration

Memory System Performance Analysis

Designers (and computer buyers) need quantitative ways to measure the performance of memory systems to evaluate the cost-benefit trade-offs of various alternatives. Memory system performance metrics are *miss rate* or *hit rate* and *average memory access time*. Miss and hit rates are calculated as:

 $Miss \; Rate = rac{Number \; of \; misses}{Number \; of \; total \; memory \; accesses} = 1 - Hit \; Rate$ $Hit \; Rate = rac{Number \; of \; hits}{Number \; of \; total \; memory \; accesses} = 1 - Miss \; Rate$

Example 8.1 Calculating Cache Performance

Suppose a program has 2,000 data access instructions (loads or stores) and 1,250 of these requested data values are found in the cache. The other 750 data values are supplied to the processor by main memory or disk memory. What are the miss and hit rates for the cache?

Solution

The miss rate is 750/2000 = 0.375 = 37.5%. The hit rate is 1250/2000 = 0.625 = 1 - 0.375 = 62.5%.

Average memory access time (AMAT) is the average time a processor must wait for memory per load or store instruction. In the typical computer system from Figure 8.3, the processor first looks for the data in the cache. If the cache misses, the processor then looks in main memory. If the main memory misses, the processor accesses virtual memory on the hard disk. Thus, AMAT is calculated as:

$$AMAT = t_{\text{cache}} + MR_{\text{cache}}(t_{MM} + MR_{MM}t_{VM})$$

where t_{cache} , t_{MM} , and t_{VM} are the access times of the cache, main memory, and virtual memory, and MR_{cache} and MR_{MM} are the cache and main memory miss rates, respectively.

Example 8.2

Calculating Average Memory Access Time

Suppose a computer system has a memory organization with only two levels of hierarchy, a cache and main memory. What is the average memory access time given the access times and miss rates in Table 8.1?

ycles) Miss Rate
10%
0%

Solution

The average memory access time is 1 + 0.1(100) = 11 cycles.

Gene Amdahl, 1922–2015

Most famous for Amdahl's Law, an observation he made in 1965. While in graduate school, he began designing computers in his free time. This side work earned him his Ph.D. in theoretical physics in 1952. He joined IBM immediately after graduation and later went on to found three companies, including one called Amdahl Corporation in 1970.

Example 8.3 Improving Access Time

An 11-cycle average memory access time means that the processor spends ten cycles waiting for data for every one cycle actually using that data. What cache miss rate is needed to reduce the average memory access time to 1.5 cycles given the access times in Table 8.1?

Solution

If the miss rate is m, the average access time is 1 + 100m. Setting this time to 1.5 and solving for m requires a cache miss rate of 0.5%.

As a word of caution, performance improvements might not always be as good as they sound. For example, making the memory system ten times faster will not necessarily make a computer program run ten times as fast. If 50% of a program's instructions are loads and stores, a tenfold memory system improvement means only a 1.82fold improvement in program performance. This general principle is called *Amdahl's Law*, which says that the effort spent on increasing the performance of a subsystem is worthwhile only if the subsystem affects a large percentage of the overall performance.