
Memory Forensics 

Memory forensics refers to finding and extracting forensic artifacts from a 

computer’s physical memory. This section explains the importance and 

capabilities of memory forensics and the tools used to support incident 

response and malware analysis.  

While a system is on, random access memory (RAM) contains critical 

information about the current state of the system. By capturing an entire copy 

of RAM and analyzing it on a separate computer, it is possible to reconstruct 

the state of the original system, including the applications the user was 

running and the files or network connections that existed at the time. The 

concept of preserving RAM per the “order of volatility”1 and inspecting it for 

signs of an intrusion is certainly not new; however, before the recent explosion 

of groundbreaking research and expandable analysis frameworks, many 

investigators relied on running the strings command on a memory dump to 

gather postmortem intelligence about an attack. Fortunately, times have 

changed, and memory analysis is not only a critical component in any forensic 

investigation, but also one of the most effective methods for malware reverse-

engineering tasks such as unpacking and rootkit detection.  

5.1.1 Why Memory Forensics Is Important  

Analysts who bring memory forensics skills to an investigation are better 

equipped to handle malware incidents than analysts who do not have such 

skills. Here are a few reasons why:  

• Attackers design some malware to run completely from RAM (i.e., memory 

resident codes) to avoid touching longer term storage devices such as the hard 

drive. Therefore, if analysts do not look for signs of intrusions in RAM, they 

might miss the most important, or perhaps the only, evidence that malware 

existed on the system.  

• Attackers design some malware to hide its own code and the resources that 

it requires from the operating system using application program interface (API) 

hooks; however, these rootkit techniques typically only work against other 

processes on the infected computer while the system is running. Hiding from 

offline memory forensics tools requires a different set of capabilities that most 

malware authors have not implemented into their code.  



• Similar to what Isaac Newton theorized about the real world, every action on 

a computer has a reaction. Even if attackers were able to study the Windows 

operating system (OS) well enough to anticipate the side effects of every API 

call, they would not be able to prevent or hide each side effect continuously 

and perpetually. If investigators become familiar with these side effects, they 

can use the information as clues when determining what might have happened 

on the suspect system. 

5.1.2 Capabilities of Memory Forensics  

Analysts can gather an extreme amount of information about the state of a 

system by using memory forensics. Table 5-1 shows a few of the default 

capabilities of a memory analysis framework and the corresponding tools that 

one might use on a live system to gather the same type of evidence. 

Based on the information in Table 5-1, memory forensics frameworks can 

produce the same information that 10–20 standard tools that analysts 

frequently use on live systems can, but with the added benefit of being able to 

bypass rootkit tricks 

 



 

5.1.3 Memory Analysis Frameworks 

 In terms of memory analysis frameworks, there are a few options from which 

to choose. The most important factors are cost, the programming language for 

developing plug-ins for the frameworks, the operating systems on which the 

frameworks run, and the reliability of the frameworks’ output. See Table 5-2 

 

 

Because Volatility is free, is written in Python, and runs on multiple operating 

systems, it is the favorite framework of many iDefense engineers. Knowing 

how tools work, rather than just knowing how to use the tools, is a 

requirement to analyzing and understanding today’s sophisticated malware. 

Volatility is open-source Python, so learning how Volatility harvests 

information is simple. In fact, one of the ways that iDefense engineers learned 

a lot about the technical aspects of memory analysis, including the format of 

kernel structures and how to parse them, was by learning from Volatility’s 

programmers by looking through the source code 

5.1.4 Dumping Physical Memory 

 To dump physical memory, iDefense recommends using win32dd2 by 

MatthieuSuiche. The tool supports memory acquisition from a wide variety of 

OS versions, including Windows 2000, XP, 2003, Vista, 2008, 7, and 2008 RC2. 

Suiche recently provided an update that includes the capability to compute 

cryptographic checksums (MD5, SHA-1, or SHA256) and client or server 

architecture so that an analyst can transmit the memory dump across the 

network easily. To get started, download a copy of win32dd from the tool’s 

home page and extract the archive. To dump the full physical address space, 



save the output file to mem.dmp in the same path as win32dd and create a 

Secure Hash Algorithm 1 (SHA-1) hash of the dumped file; use the following 

syntax: 

 F:\>win32dd.exe /f mem.dmp /s 1 

5.1.5 Installing and Using Volatility  

To begin using Volatility, download the package from its home page on the 

Volatile Systems3 website or grab a copy of the latest Subversion package4 

hosted at Google code. The Volatility Documentation Project5 by Jamie Levy 

(a.k.a. gleeda) and a few anonymous authors contains some great manuals for 

installing Volatility on Windows, Linux, and OSX. In most cases, to get started, 

the only requirement is to extract the archive and invoke the “volatility” script 

with Python, as shown in the following command sequence: 

 



 



 

All of the commands shown in the output are available by default. Analysts can 

learn any required arguments for individual commands by issuing “python 

volatility --help”; however, many of the commands work without arguments. 

The full syntax for extracting evidence from the memory dump created with 

Volatility follows:  

$ python volatility -f mem.dmp 

5.1.6 Finding Hidden Processes 

The Windows kernel creates an EPROCESS object for every process on the 

system. The object contains a pair of pointers, which identifies the previous 

and subsequent processes. Together, this creates a chain of process objects 

also called a doubly linked list. To visualize a doubly linked list, think of a group 

of people who join hands until the group is standing in a big circle. By joining 

hands, each person connects to exactly two other people. To count the 

number of people in the group, one could pick a person to start with and then 

walk in either direction along the outside of the circle and count the number of 

heads until ending back at the starting point. Tools like Process Explorer, Task 

Manager, and many other system administration programs use API functions 

that enumerate processes by walking the linked list using this same 

methodology. 

Enumerating processes in memory dumps is different because the system is 

offline and therefore API functions do not work. To find the EPROCESS objects, 

Volatility locates a symbol named _ PsActiveProcessHead, defined in 

ntoskrnl.exe. Although the symbol is not exported, it is accessible from the 

_KPCR structure, which exists at a hard-coded address in memory, as described 

in “Finding Some Non-Exported Kernel Variables in Windows XP”6 by Edgar 

Barbosa. This _PsActiveProcessHead symbol is a global variable that points to 

the beginning of the doubly linked list of EPROCESS objects. Exhibit 5-1 shows 

the path that Volatility takes to find the desired data in a memory dump. 



 

To use Volatility to generate a process listing by walking the linked list of 

processes, use the following syntax: 



 

 

After understanding how the pslist command works, it is possible to evaluate 

why it might not always be reliable. One reason is due to rootkits that perform 

direct kernel object manipulation (DKOM). In the book Rootkits: Subverting the 

Windows Kernel, Greg Hoglund and James Bulter show how to hide processes 

by unlinking entries from the doubly linked list. The authors overwrite the 

forward link (Flink) and backward link (Blink) pointers of surrounding objects so 

that they point around the EPROCESS object that represents the process to 

hide. As shown in Exhibit 5-2, the overwriting effectively hides a process from 

any tool that relies on walking the linked list, regardless of if the tool runs on a 

live system or a memory dump. Since central processing unit (CPU) scheduling 

is thread based, the hidden process remains running on the operating system 

even when rootkits unlink the EPROCESS objects. 

Consider the previous analogy of people joining hands and forming a circle to 

depict the doubly linked list depicted in Exhibit 5-1. If one person releases both 

hands to step outside the circle (see Exhibit 5-2), the people on the left and 

right will join hands and close the gap. The disconnected person does not 

disappear; instead, he or she is now free to walk about the room. Counting 



people using the original method will result in one fewer person; however, by 

changing techniques and scanning the entire room using a thermal imaging 

device, the results would be accurate, even if one or more people were no 

longer standing in the circle. 

 

The Volatility command psscan2 is not exactly a thermal imaging device, but it 

works similarly in theory. Instead of walking the linked list of EPROCESS objects 

like pslist, psscan2 scans linear memory for pools with the same attributes 

(paged versus nonpaged, tag, and size) that the kernel uses for EPROCESS 

objects, and then applies a series of sanity checks. This way, psscan2 is able to 

find EPROCESS objects in memory even if a rootkit has unlinked it from the list. 

The same concept applies to finding hidden kernel drivers, sockets, 

connections, services, and various other kernel objects. 

5.1.7 Volatility Analyst Pack 

Volatility Analyst Pack (VAP)7 is a collection of plug-ins designed for malware 

analysis and rootkit detection. Table 5-3 describes the purpose of the plug-ins 

and their statuses. If the status is “Public,” then the plug-in is publicly available. 

If the status is “By request,” then the plug-in is currently only available to 

iDefense customers upon request (BETA mode). 

5.1.8 Conclusion 



Memory forensics is a rapidly growing aspect of incident response and 

malware analysis. Its powerful default capabilities can replace 10–20 live 

system tools, not to mention the features provided by third-party plugins such 

as VAP. Although there are several options, iDefense recommends the free, 

open-source Volatility framework, which also provides an analyst with the 

opportunity to learn about the operating system. 

 

 



Honeypots 

Creating an asset to attract malicious activity for monitoring and early warning 

is a well-established activity. Not only do honeypots, isolated technical assets 

configured with a high level of logging, provide valuable attack data for 

analysis, but security analysts also periodically use them as decoys that 

deliberately contain known vulnerabilities. When deployed as a distinct 

network, known as a honeynet, a firewall is specially configured to collect and 

contain network traffic. The placement and configuration of a honeypot largely 

determine its success, and because malicious activity is likely to occur, it is 

crucial that it be isolated from true IT assets and legitimate traffic. 

Network and information security relies on in-depth defenses to limit 

unauthorized access and dissemination of sensitive information. These in-

depth defenses provide a hardened posture but give no insight on 

vulnerabilities and other weaknesses exploited by attackers in the wild. This 

lack of visibility requires a reactive approach to a security incident, which is a 

norm within the IT security field as a whole. An ideal approach involves 

proactive measures using knowledge and information of upcoming 

vulnerabilities, malicious code, and attackers to build up defenses prior to an 

incident. One method of obtaining the necessary data to create safeguards 

requires sacrificing a specially configured system, known as a honeypot, to lure 

in malicious activity for analysis. 

A honeypot is an information system resource whose value lies in 

unauthorized or illicit use of that resource.8 A honeypot is a concept that 

capitalizes on the isolation of a resource and subsequent activity that interacts 

with the resource. Designed to resemble an interesting target to attack, probe, 

exploit, or compromise and configure with a high level of logging, honeypots 

attract attackers and malicious code to capture their activity for analysis. 

Honeypots thrive in isolated environments because they have no production 

value or business purpose and all activity observed is suspicious. Placement of 

these resources is important to minimize the amount of legitimate or 

unintentional traffic. 

Honeypots are beneficial if properly deployed and maintained. The fact that 

honeypots resemble an easy target may act as a decoy to keep attackers from 

attacking production systems. Honeypots also provide data and insight on who 

attacks those honeypots and on attack strategies used during exploitation. If 



properly handled and left untainted while gathering, these data can provide 

evidence in an incident investigation in the form of digital fingerprints. Another 

benefit results in the building of safeguards in production security defenses to 

minimize the threat of attacks and targets based on the information gathered 

from the honeypot. 

Honeypots fit into two different classifications based on the level of system 

interaction available to the attacker. Low-interaction honeypots emulate 

vulnerable services and applications to entice inbound exploit attempts from 

attackers. Emulation occurs by mimicking real network responses to inbound 

connections allowing an attack to progress to completion. The attacks do not 

compromise the honeypot because the honeypot itself is not vulnerable; 

rather, it follows along by emulating vulnerabilities. Logs of the activity capture 

the exploit attempt, and postattack analysis provides information to protect 

other production devices from falling victim to the attack. The second type of 

honeypots, known as high-interaction honeypots, utilize actual services and 

vulnerabilities to attract inbound attacks. The use of real services provides 

detailed information on the steps involved in exploitation and the 

postcompromise activity. This type of honeypot requires close and constant 

observation because the system is likely to fall victim to compromise. High-

interaction honeypots also need extra security measures to contain 

subsequent attacks or malicious code propagation. 

The two types of honeypots have strengths and weaknesses that need 

consideration before deployment. Emulation keeps the lowinteraction 

honeypots relatively safe from compromise and lowers the amount of effort 

required for maintenance. Low-interaction honeypots have limited data 

logged, reducing analysis time; however, emulation requires prerequisite 

knowledge of vulnerabilities and cannot capture attacks on unknown 

vulnerabilities. A drawback to a lack of compromise is a limited amount of data 

available after an attack is attempted. High-interaction honeypots provide 

more information on malicious activity than low-interaction honeypots but 

require more resources to analyze and maintain. Creating and maintaining a 

high-interaction honeypot consume significant resources because they 

typically involve customized technologies such as firewalls, intrusion detection 

systems (IDSs), and virtual machines, which need frequent rebuilds after 

compromise. Honeypot analysis consumes large quantities of time and 

resources, as this type of honeypot logs the full attack and subsequent activity, 

not just the initial inbound connection; however, after an attack, the system 



will remain compromised and will require cleansing. A heightened level of risk 

is involved with a compromised honeypot because the attacker can launch 

further attacks on other systems. Investigations would show the honeypot as 

the source of the attack, which raises legal concerns. 

Many commercial and open-source honeypot solutions are available and vary 

in intended use. Typically, honeypots act as a decoy to lead attacks away from 

production systems. Specter, a commercial honeypot, is an example of a low-

interaction honeypot that advertises vulnerabilities and acts as a decoy and 

data collection solution.9 A collection of honeypots used to simulate a network 

of systems, known as a honeynet, requires a system called a honeywall to 

capture and analyze the data on the network and contain the risks presented 

by these high-interaction honeypots.10 Exhibit 5-3 shows a honeynet’s 

infrastructure, including the honeynet gateway residing in the demilitarized 

zone (DMZ) to expose its vulnerable infrastructure for inbound attacks 

 

Honeypots can also collect malicious code. Applications like Nepenthes also 

advertise vulnerabilities and capture and download malicious code or analyze 

shellcode resulting from exploitation. Nepenthes also includes submission 

modules to submit captured malicious code to a number of other servers 

including Norman’s SandBox for analysis.11 Honeypots also have the ability to 



track spam e-mail. Honeyd, a lightweight honeypot daemon configured to 

simulate a mail relay or open proxy, captures e-mail spam for tracking and 

spam filter creation.12 Honeypots are not limited to servers capturing 

information regarding malicious activity. Capture-HPC13 and MITRE’s 

Honeyclient14 are client-based honeypots that act as clients interacting with 

malicious servers to download malicious code and log changes made to the 

system. For more honeypot-related applications, the Honeynet Project offers a 

list of projects available for download.15 

The legality of honeypot deployment is under constant debate and generally 

involves discussions on entrapment, privacy, and liability. Entrapment occurs 

when a law enforcement officer or agent induces a person to commit a crime 

that the person would be unlikely to commit. Entrapment does not apply to 

honeypots, as they do not induce the attacker to break into the system. In 

addition, entrapment is a defense to a crime, meaning one cannot sue another 

for this reason. Privacy raises a big issue with honeypots in regard to logging 

information on attackers. The Federal Wiretapping Act and the Electronic 

Communication Privacy Acts, among others, come into play when logging an 

attacker’s activity. Typically, a logon banner stating that the server monitors 

and logs activity proves enough for to waive attackers’ privacy laws. Liability in 

the event of a compromised honeypot used to attack another system is a 

major legal concern.16 Consultation with a legal team can reduce the 

occurrence and impact of these legal issues before deploying a honeypot. 

Honeypots lure attackers into performing malicious actions within their 

systems for information-gathering purposes; however, seasoned attackers can 

detect a honeypot. An attacker who knows that he or she is in a honeypot will 

not perform the malicious activity that the honeypot intends to catch, or he or 

she avoids the honeypot’s ability to log activity before he or she performs the 

activity. Honeypot detection techniques range in complexity and depend on 

the honeypot technology in use. Emulated services used in low-interaction 

honeypots may not perform exactly as the real service does. An attacker can 

use comparative analysis between a real service and an emulated service to 

detect a honeypot. The detection methods for high-interaction honeypots 

include virtualization checks, network traffic modification, and latency checks. 

Most high-interaction honeypots run in a virtualized environment, which 

allows attackers and malicious code to check for strings and environmental 

settings to fingerprint a honeypot. An example of an environmental setting 

used in a virtualized system is registry values added for virtual devices required 



for the guest OS to utilize hardware. Honeynets require data control to limit 

outbound attacks, and analyzing outbound network traffic for modification or 

connection blocking is an indication of a honeynet. For example, honeynets 

typically employ snort inline to scrub outbound attacks, and a popular test 

attempts to run /bin/ sh on an external host to see if a snort modifies the 

packet or drops the connection. High latency from communication tests can 

provide an indication of a honeypot using logging modules. Modules used for 

logging typically log all activity performed on the system; therefore, running 

instructions that increase the load on the system results in network latency. A 

common example of this detection method uses the dd command to copy an 

endless amount of data to /dev/null, which produces overwhelming amounts 

of data for the honeypot to log. The ping command can check the network 

latency during the heavy load that the dd command invokes. 

Honeypots provide security professionals and network administrators with 

information on state-of-the-art attack techniques seen in the wild. Using this 

information to implement security safeguards strengthens a network’s posture 

and reduces exposure to threats. Proactive responses to threats and attacks 

are possible with obtained information, which makes honeypots valuable tools 

to help survive the malicious nature of the Internet. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Malicious Code Naming 
This section clarifies the malicious code–naming conventions within the 

industry, which can be confusing and difficult to reference. The differences in 

procedures used by antivirus tools and those used by analysts are at the heart 

of the problem. This section also discusses in depth this and other challenges 

to naming malicious code consistently.  

Many security researchers and administrators confuse viruses with one 

another because of the way that antivirus companies name or refer to them. 

There are several reasons for the confusion, and a few organizations are trying 

to improve the currently dismal state of malicious code naming in the antivirus 

industry. Some basic tools and advice can help administrators determine 

whether they, in fact, are dealing with a generic virus name or one that 

accurately describes the entire malicious code family. Administrators might 

expect that antivirus detection names would be a good metric to determine 

the malicious code family; however, this is often not an accurate or reliable 

measurement. The media and researchers often tend to use different names, 

sometimes even within the malicious code itself, while other professionals may 

alter or hide the true name of the virus for their own reasons. Many factors 

make analysts the best sources for determining the name of a malicious code 

over any other currently available automatic solution.  

iDefense analysts usually assign a malicious file a new name when nothing 

previously describes it or when it provides a more valuablereference point. 

Other organizations may have different policies about renaming viruses when 

they create detections for them because it prevents the revealing of new 

hacking tools and techniques to attackers. Similarly, attackers can insert fake 

authors, tool names, or other details to confuse analysts. To determine if a 

malicious program already has a malicious code name, analysts can use online 

virusscanning services such as Virustotal or av-test.org. As an example, Exhibit 

5-4 displays the results of such a scan showing the detection for a typical 

banking Trojan. 



 
In these Virustotal results, seventeen out of thirty-eight (44.74 percent) 

antivirus engines detect this file as malicious. Despite the average rate of 

detection from various antivirus companies, none of them indicates either the 

true name of the virus family or the fact that its purpose is to target banks. 

Naming a malicious file using this technique is highly likely to be wrong or too 

generic to convey any useful information; however, it is very easy and quick for 

anyone to do. It does not require any understanding of the code or its purpose. 

Despite weaknesses in this technique, administrators may be able to use 

detection names to research the threat further and potentially identify a 

similar threat and malicious behavior. This is notpacked or hidden code, and 

behavior rather than malicious code names that convey the most information. 

As an example, an antivirus product may name two different files the same if 

they download additional functiality (downloaders) or if the antivirus engine 

detects the same type of packer used against two completely different threats. 

Using automatic programs such as antivirus programs is a useful preliminary 

step to help determine the risk of a malicious file, but such programs are not as 

accurate or reliable as reverse engineering or behavioral analysis. The 

signatures are a technique for analysts to write and improve detection of 



threats but may not require the engine or analyst to analyze the purpose of the 

code. Antivirus scanning products have a one-to-one relationship between a 

signature and a detection name. This helps them track alerts from customers 

but often does little to help customers understand the nature of the threat, 

especially with generic signatures. 

There are many reasons for the differences between the naming that 

researchers and reverse engineers use compared to that of automatic antivirus 

scanning products. Analysts do not suffer from many of the same problems 

because they are able to collect and inspect many different things that are not 

available to antivirus products. Observing network traffic, modified or created 

files, memory contents, and other information from reverse engineering the 

binary or the propagation technique allows analysts to more accurately 

identify and name malicious files; however, such naming is still imperfect. The 

detection of the banking Trojan, mentioned above, carries just as many 

different and unique names that researchers use to describe it. Researchers 

commonly refer to this particular code as wsnpoem/ntos, Zeus/zbot, and PRG. 

This type of naming depends upon awareness rather than an automated tool, 

and is therefore subject to human error or purposeful renaming when multiple 

researchers are to assign different names. Multiple names could be the result 

of private information. For instance, iDefense names new viruses when there is 

no public information available for them; however, when a public analysis or 

virus name becomes available, it becomes necessary to identify that both 

threats are, in fact, the same based upon behavior or other attributes. 

Antivirus names use many different categories, and they all follow the same 

format: 

 
Although this format is common, many antivirus vendors have a lot of 

flexibility when they name a new virus, including the family, group, and variant 

names. Common types include generic or heuristic (heur for short) in their 

names. Administrators should understand the meaning of antivirus product 

naming that they use in their environments by referring to naming 

documentation from vendors. 



Other virus names may originate through an analyst’s creativity or a virus’s 

circumstances. For instance, the W32/Nuwar@mm threat actually originated 

from e-mails that initially spread using the attention-grabbing headline 

“Nuclear War.” Researchers know this threat better as “Storm Worm” 

because it also spread using a different e-mail subject line, such as “230 dead 

as storm batters Europe.” In fact, the community disputed the naming of this 

particular virus as a worm because it spreads using massive e-mail campaigns. 

There is also some disagreement between different organizations on whether 

to depend upon attacker-supplied information to name viruses. Some 

researchers argue that hiding the names can protect the innocent, for instance 

if the attacker artificially inserts an enemy’s name or website out of spite. 

Hiding real names or mutating them also attempts to hide origin. This prevents 

attackers from identifying new tools from new virus names. Mutating names 

can also help protect an innocent website or avoid giving out information that 

may allow new attackers to locate public tools. For example, Brian Krebs of the 

Washington Post documented one such incident related to the virus named 

Blackworm, Nyxem, My Wife, and Kama Sutra. The origins of each name are 

clear if you understand how the malicious code works, but it can often be 

difficult to determine that they are, in fact, equivalent threats (see Exhibit 5-5) 

 
Different goals and perspectives influence the naming of viruses and may 

encourage researchers to invent new names even when an existing name is 

already available. According to Brian Krebs, Nyxem was derived by transposing 

the letters m and x in Nymex, a shorthand term for the New York Mercantile 

Exchange. 

Virus names are often cryptic on purpose because of a lack of verifiable 

information. Overlapping names can further confuse naming when an 

antivirus product assigns a well-known name to a new or unknown virus. For 



example, iDefenseanalyzed a Chir.B worm variant in 2007 that the Avast 

antivirus scanning engine determined was a much older threat called Nimda 

(or Win32:Nimda [Drp]). The reason for the alert is that the signature detected 

the behavior of the file-infecting worm functionality and assigned an older 

name that has the same behavior. The detection of new threats is 

commendable using older signatures, but it is clear that rule writers are not 

able to express themselves sufficiently to tell users what an alert actually 

means and whether it detects a behavior, a particular virus, or something else. 

Analysts cannot predict the future evolution of viruses; therefore, it is difficult 

to choose names reliably that will not detect multiple threats. 

The Common Malware Enumerations (CME) list, while encouraging in its early 

days, never reached a critical mass and was not sustainable with the large 

volume of new viruses and limited resources. It provided a catalog of thirty-

nine total different threats over several years with naming from various 

antivirus vendor names and virus descriptions. Although using this as a tool to 

investigate potential virus names and families can be useful to administrators, 

it has been largely neglected during the last two years according to the CME 

website.21 Groups like the Computer Antivirus Researchers Organization 

(CARO) have experienced similar problems when attempting to standardize 

the naming of viruses 

 

5.3.1 Concluding Comments 

Administrators should attempt to understand abbreviations and standard 

naming conventions for incidents because it may help them look for certain 

behavior or ask questions; however, dependence on virus naming is not 

reliable or capable of conveying enough information tobe very useful. Analysts 

and reverse engineers are still the best sources for identifying virus families 

because of the high variation of names assigned to viruses. Extensive research, 

including reverse engineering and behavioral analysis, is usually necessary to 

determine how to name a threat accurately. 

 

 

 

 



 

Automated Malicious Code Analysis Systems 

The massive volume of distinct pieces of malicious code in existence exceeds 

the capacity of human analysts. Fortunately, researchers can automate much 

of the initial analysis. This automation allows much greater efficiency and 

prioritization of analysis of malicious code samples. 

With attackers producing tens of thousands of new pieces of malicious code 

every day,23 it is impossible to analyze each sample by hand. Behavioral 

analysis, the process of running an executable in a safe environment and 

monitoring its behavior, is one way to determine what malicious code does. 

Automated malicious code analysis systems (AMASs) perform this process 

quickly and efficiently to produce a report that a human analyst can use to 

determine what actions the malicious code took. In this section we explore the 

advantages and disadvantages of different techniques used by AMASs to 

analyze malicious code. 

In recent years, researchers have built many AMASs that differ in capability 

and analysis techniques but all operate under the same principle. To be 

effective, malicious code has to perform some action on the infected system, 

and monitoring the malicious code’s behavior is a useful way to determine the 

malicious code’s functionality. Behavioral analysis cannot determine 

everything that malicious code is capable of, but it can tell you what malicious 

code will do under certain circumstances.  

There are two main techniques to analyze the behavior of malicious code: 

1. Passive analysis: Record the state of the system before and after the 

infection. Then, compare these states to determine what changed 

2. Active analysis: Actively monitor and record malicious code actions during 

execution. 



 
5.4.1 Passive Analysis 

Passive analysis is the hands-off approach to behavioral malicious code 

analysis. All it requires is a computer to infect, some way to capture the state 

of that computer, and a way to restore the system to its original state. Passive 

analysis systems work in the three-stage cycle shown in Exhibit 5-6. First, 

someone installs the operating system and any necessary applications on a 

computer, recording the “clean” state. The recorded information includes any 

features of the system that malicious code might alter, such as the file system 

and Windows registry 

Second, the malicious code in question is executed on the system for a period 

of time. The amount of time depends on how quickly the analysis must be 

performed. Two- to three-minute runtimes are common, as this is normally a 

sufficient amount of time for the malicious code to complete its initial 

installation. 

After the malicious code infects the system, it must be shut down before an 

external system analyzes its disk and memory to record the new “infected” 

state. An external computer may be used to record the infected system’s state 

to avoid any interference from the malicious code. Malicious code often hides 

files and processes from the user using rootkits, but an external system (such 

as a virtual machine host or a system working from a copy of the infected disk) 

is not susceptible to this interference. 

During the analysis stage, the external system compares the infected state to 

the clean state already recorded. AMASs can make comparisons between any 

features of the system that have a state.  

Common analysis features include the following 

• File system 



 • Windows Registry content 

 • Running processes  

• Listening ports  

• Memory contents 

 

The comparison between the clean and infected states is where the passive 

analysis system shines. The analysis typically consists of two stages (see Exhibit 

5-7). In the first stage, it compares the clean and infected states and creates a 

list of all changes in the monitored features. While it may seem that this list of 

changes is sufficient, it is important to remember that while the malicious code 

was infecting the system, Windows was also performing thousands of tiny 

tasks that might also make changes to the file system. This is especially true if 

anyone has rebooted the system since the original clean state was recorded, as 

might be the case in analysis systems that use physical hardware. To filter out 

these nonmalicious changes, the system uses a second stage (middle section) 

to remove all entries that are included in a predefined white list. The result is a 

report that contains all changes on the system that are relevant to the 

malicious code analysis. 

In addition to static information about the malicious code (file name, size, and 

MD5), the resulting report might contain the following information 

New files:  

• C:\WINDOWS\system32\lowsec\user.ds  



• C:\WINDOWS\system32\lowsec\local.ds  

• C:\WINDOWS\system32\sdra64.exe  

 

 

Registry modifications: 

 • Key: HKLM\software\Microsoft\Windows NT\ CurrentVersion\Winlogon 

• Old Value: “Userinit”=“C:\\WINDOWS\\system32\\ userinit.exe”  

• New Value: “Userinit”=“C:\\WINDOWS\\system32\\ userinit.exe, 

C:\\WINDOWS\\system32\\sdra64.exe” 

This information shows us that not only did the malicious code create three 

new files but also it altered the Windows Registry so that the file sdra64.exe is 

run when the user logs on to the system 

Passive analysis systems also frequently include network monitoring, as long 

as the monitoring system occurs outside of the infected system. Network 

traffic is a key component to many AMASs because it includes any external 

communication the malicious code might make and reveals the source of the 

malicious code’s command-andcontrol (C&C) server if one exists. In the 

mentioned example report, analysis of the network traffic revealed that the 

URL visited was http://index683.com/varya/terms.php 

Knowing that the malicious code visits this particular website is very valuable. 

Security personnel can search proxy logs for any systems that visited this site 

to pinpoint infected systems. Blocking access to this URL will also help prevent 

the malicious code from conducting its malicious activity. 

Malicious code cannot typically detect a passive analysis system because the 

system does not interfere with its operation. Malicious code can make passive 

systems ineffective by taking advantage of the system’s analysis timeout. If the 

system only allows the malicious code to run for three minutes before 

recording the infected state, the malicious code could simply sleep for four 

minutes before taking any action. 

While passive analysis is simple, it cannot tell the malicious code’s entire story. 

For instance, if the malicious code creates a temporary file while installing its 

components and then deletes that file before the system captures the infected 

http://index683.com/varya/terms.php


state, the analysis report will not includethis evidence. Passive monitoring also 

fails to capture the timeline of the infection. The sample report above shows 

that the malicious code creates three files, but it does not show the order in 

which the malicious code created them. It is possible that the malicious code 

created sdra64.exe first, and that executable created the additional files. To 

capture this information, the system must actively monitor the malicious code 

5.4.2 Active Analysis 

Unlike passive systems, active analysis AMASs install software on the soon-to-

be-infected system that monitors the malicious code and keeps a log of its 

activity. This process creates a much more complete report that can show the 

order in which the malicious code made changes to the system during the 

infection and can record which specific process took each action. Some may 

classify many modern Trojans as downloaders, as their primary functionality is 

to download and execute a secondary payload. Active analysis systems can 

differentiate between files and registry keys created by the downloader and 

those created by the new file. This functionality is one way that active systems 

provide much more detail than a passive system ever could. 

One way that active systems monitor malicious code activity is through a 

process known as application program interface (API) hooking. An API hook 

allows a program to intercept another application’s request for a built-in 

Windows function, such as InternetOpenUrlW(), which applications use to 

make requests for Web pages. API hooking is a technique often used by 

rootkits because it allows malicious code to not only record what the user is 

doing but also alter the data sent to and returned by the API function. A 

rootkit might use this to hide the presence of particular files or ensure that the 

user does not stop any of its malicious code processes. 

Active analysis systems can install their own rootkits that hook the APIs that 

the malicious code will use, allowing it to keep track of every API call the 

program makes. If malicious code can detect the AMAS processes, it could 

simply exit without taking any actions that would reveal its functionality. This 

is the primary disadvantage to active systems, but a well-written rootkit can 

hide its own processes to prevent the malicious code from detecting it and 

altering its behavior.Active systems are not vulnerable to the same waiting 

technique that malicious code uses to fool passive systems. An active analysis 

rootkit can hook the sleep()function that malicious code uses to delay 



execution and then alter the amount of time the malicious code sleeps to just 

1 millisecond. 

Active analysis systems also work in a cycle between clean and infected 

states, but do not require a comparison of the clean and infected states to 

perform their analysis. After the malicious code completes execution or runs 

for the maximum time allowed, the system records the activity in a report and 

begins restoring the system to the clean state. 

Another form of active analysis involves using an emulator rather than 

infecting a traditional operating system (OS). The most prominent emulation-

based analysis system is the Norman SandBox.24 Instead of installing a rootkit 

and hooking the Windows APIs, Norman created software that emulates the 

Windows OS. When malicious code running in the Norman SandBox makes a 

call to the sleep()function, it actually calls a Norman function that acts just like 

the Windows sleep()function. Malicious code can detect emulated systems if 

they do not perfectly mimic the operating system’s API, and malicious code 

authors frequently attempt to evade these systems. The main advantage of 

emulated systems is speed. Emulated systems do not require swapping 

between a clean and infected state and can run the malicious code faster than 

a standard OS because they do not need to provide full functionality of each 

API; they need merely to emulate the OS in a convincing way. For any 

organization that processes thousands of samples each day, speed is a key 

factor in rating an AMAS. 

5.4.3 Physical or Virtual Machines 

For nonemulated AMASs, both passive and active, analysis time is spent in two 

primary categories. First, time is spent allowing the malicious code to execute. 

If the runtime is too short, the analysis might miss a critical step taken by the 

malicious code, but the more time allotted for the malicious code to run, the 

longer the system takes to generate a report. The second major source of 

analysis time is restoring the infected system to a clean state. This must be 

done toprepare the system for the next analysis and makes up a significant 

portion of the analysis time. 

Virtualization systems like VMWare and VirtualBox have many features that 

make them an excellent choice when developing an AMAS. These programs 

allow a user to run one or many virtual computer(s) on top of another OS. 

Researchers use these systems to run many analysis instances on a single 



physical computer, saving time, power, and money. Virtual machines (VM) also 

have the ability to store a clean “snapshot” of the operating system. After the 

analysis is complete, restoring the system to the clean snapshot typically takes 

less than 30 seconds; however, as with active analysis systems, it is possible for 

malicious code to detect that it is running in a VM and alter its execution path 

to trick the system into producing an inaccurate report. One recent example of 

VM-aware malicious code is Conficker, which did not execute in VMs in order 

to increase analysis difficulty. 

Physical machines are not as simple to restore compared to their virtual 

counterparts, but there are multiple options available. One possible solution is 

Faronics DeepFreeze.25 DeepFreeze is a Windows program that allows 

administrators to revert a system to a clean state each time it reboots. Internet 

users at universities and Internet cafes, where many users access the same 

pool of computers, commonly use DeepFreeze. iDefense tested DeepFreeze for 

use in one sandbox and found that it was not sufficient to prevent malicious 

code from altering the system. Software solutions are not reliable for this 

purpose because malicious code can disable them or use methods to write to 

the disk that the software does not monitor. 

CorePROTECT makes a hardware product named CoreRESTORE that acts as an 

interface between a computer’s integrated drive electronics or advanced 

technology attachment (IDE/ ATA) controller and hard drive (Exhibit 5-8).26 

CoreRESTORE prevents the system from making any changes to the disk but 

returns data as though someone already altered the disk. This solution is 

effective but is only available for systems that use IDE/ATE interfaces. A third 

solution is to save a complete copy of the system’s hard drive in a clean state 

and write this copy to the system’s disk each time a restoration is necessary. 

Joe Stewart of SecureWorks first introduced this method in The Reusable 

Unknown Malware Analysis Network(TRUMAN) system, and iDefense currently 

uses this method in its Malcode Rapid Report Service (ROMAN). This method 

takes two to three minutes per analysis but is undetectable by malicious code 

and ensures that each analysis begins with a known clean image. 



 
Pure passive and active analysis systems are common, but there is no reason 

that a single system cannot employ techniques from both categories. iDefense 

is currently developing a new AMAS known internally as Automal, which uses a 

combination of passive and active analysis using a custom rootkit. The primary 

functionality of Automal is based on memory forensics using custom plug-ins 

for the Volatility framework.27 Memory forensics is relatively new in the world 

of AMAS but allows systems to discover critical information about data and 

processes that are hidden from tools running on an active system and show no 

evidence in features typically monitored by passive systems. Automal runs 

Volatility on a snapshot of the infected system’s memory when the system is 

offline, which prevents the malicious code from detecting it or changing tactics 

based on its use. AMASs are valuable tools to anyone who regularly analyzes 

malicious code, not just to those who process thousands of samples per day. 

Many organizations do not have the resources or need to develop their own 

AMASs. Fortunately, many are available free online. Table 5-4 shows some of 

the most popular AMASs currently available 

 



Each system uses a different analysis mechanism and may return different 

results. Submitting files to multiple systems can be beneficial since the 

combination of the resulting reports may be more complete than what a single 

system can produce. Using AMAS is an excellent first step during any malicious 

code investigation, as a fully automated analysis can be performed quickly and 

requires little human interaction. 

 

 

 

Intrusion Detection Systems 
 

Network security encompasses any safeguards deployed to increase the safety 

of interconnected systems and the information that traverses the network 

between these systems. Connecting computers allows for communication and 

the exchange of information, but also exposes these computers to threats 

from remote locations. This exposure to external threats needs a monitoring 

and detection solution to ensure the safety of interconnected systems. In this 

section, iDefense describes a network detection solution called an intrusion 

detection system (IDS) 

Every day, new vulnerabilities and malicious code threaten systems on 

networks. The constant update of threats requires strenuous patching 

schedules and antivirus updates. Patching and antivirus updates in an 

enterprise environment take time, which prolongs the period in which devices 

are vulnerable. In the event that no patch exists for a given vulnerability (such 

a case is known as a zero-day vulnerability), devices are vulnerable for an even 

longer period while the vendor develops a patch. There is a need for systems 

to detect vulnerabilities and malicious code activity during these vulnerable 

periods. An IDS can satisfy this need very quickly, as these devices can receive 

one update and detect malicious activity across an entire network of 

computers. 



 
An IDS is a device that monitors network traffic for malicious activity. IDS 

devices, referred to as sensors, detect malicious activity by searching through 

traffic that traverses a network. The IDS sensor requires access to network 

packets, which is possible through two different implementations called out of 

line and inline. Exhibit 5-9 shows the difference in network topologies between 

out-of-line and inline sensors. 

Out-of-line sensors connect to a switched port analyzer (SPAN), an action also 

known as monitoring, port mirroring, or a network tap. A SPAN port is a port 

on a network device, such as a switch or firewall, that receives a duplicate feed 

of the real-time traffic for monitoring purposes. A network tap operates in a 

similar manner; however, these are standalone devices that send and receive 

traffic between two ports and have a third port that receives a copy of this 

traffic for monitoring purposes. Out-of-line sensors connected to a SPAN either 

port or tap monitor traffic and produce alerts in response to malicious activity. 

Inline sensors differ from out-of-line sensors in that they physically sit in the 

path of the network traffic. Network traffic travels from its source through the 

inline device to its destination. The inline sensor checks the traffic sent through 

it for malicious activity to produce alerts or block the malicious activity. Inline 

sensors configured to block malicious traffic, known as intrusion prevention 

systems (IPSs), have a greater impact on reducing the occurrence of malicious 

activity on a network. 



Both types of sensors use rules, also known as signatures, to detect malicious 

activity. IDS sensors rely on these signatures to detect malicious activity; 

therefore, the overall effectiveness of an IDS sensor mostly depends on the 

caliber of the signatures. Most IDS vendors have different rule structures or 

languages, but such rules generally use content matching and anomalies to 

detect events. 

Content-matching rules use specific pattern matches or regular expressions to 

search network traffic for specific strings or values associated with malicious 

traffic. These rules are very specific and require prior knowledge of the 

particular malicious content within network activity. The use of regular 

expressions provides flexibility to a signature by allowing it to search for 

multiple variations of a string. For example, the following shows a content 

match and regular expression that search network activity for HTTP GET 

requests related to a client infection. The content match is static and 

straightforward, but the regular expression enhances the effectiveness and 

accuracy by searching for multiple different actions. 

 
Sensors also detect malicious activity based on anomalous network traffic. 

These anomalies include protocol-specific anomalies and traffic thresholds. 

Network protocols abide by standards, and abnormalities to these standards 

are an indication of suspicious activity. Signature authors capitalize on these 

protocol abnormalities to detect malicious activity. For example, Exhibit 5-10 

shows such a protocol anomaly witnessed within the HTTP header of a GET 

request generated by an infected client. The malicious code author added the 

fields SS and xost to the header, allowing for easy detection by an IDS 

signature as they are not part of the HTTP protocol. 



 

Traffic thresholds detect anomalous increases in traffic compared to a baseline 

amount of traffic. This approach requires a baseline figure that accurately 

represents the normal amount of traffic expected toobserve an increase. The 

baseline figure needs constant adjustments to reflect legitimate increases and 

decreases in traffic patterns. Without these adjustments, the IDS will generate 

many alerts on legitimate traffic and waste investigative resources. Threshold-

based detection does not often detect a specific threat but provides a heuristic 

approach to malicious activity detection. These events require investigation to 

determine the specific issue, as they are prone to trigger on nonmalicious 

traffic 

By name, IDS suggests that such systems simply detect inbound attempts to 

gain entry to a device; in reality, they have the ability to detect much more. An 

IDS device can detect any type of malicious activity that traverses a network 

based on the rules used for detection, with some exceptions described later in 

this section. The success of an IDS device in detecting a particular event 

depends on the accuracy and flexibility of the signatures within its rule set 

A rule set is a list of signatures that the IDS device uses to detect malicious 

activity. IDS vendors supply a rule set for their products, and many allow the 

creation of custom signatures. The signatures within these sets can detect 

inbound attacks on servers and clients, malicious code infections, and 

propagation. 

An IDS device has the ability to detect inbound attacks on a server or client 

from specially crafted signatures. To detect these attacks, the signature author 



needs prior knowledge of the attack or the vulnerability to match its network 

activity. Equipped with a signature for the attack or vulnerability, the IDS 

sensor can detect the activity and trigger an alert for the possible compromise 

on the destination. TheIDS, however, is unable to determine if the end system 

was vulnerable to the detected attack. An investigation is pivotal to determine 

if the attack was successful. 

Rules can also detect worm propagation via content matches or anomalies. 

The content match approach requires prior knowledge of the network activity 

the worm generates when it attempts to spread to other systems. A signature 

match provides the source of the worm propagation, which is an infected 

system that needs remediation. An investigation of the destination in this 

event will determine if the worm successfully spread to the system 

An anomaly-based rule can provide worm detection in a heuristic manner. By 

using thresholds, a signature can trigger an alert on an increase in traffic over a 

worm-able service, such as MS-RPC, NetBIOS, or SUNRPC, to investigate a 

possible worm outbreak. For example, if an increase in traffic occurs from one 

system over Microsoft NetBIOS port 139, it could be a worm attempting to 

propagate to other systems. This alert, however, could also be the result of a 

legitimate file transfer to a shared resource. This shows the need for 

investigation to determine the cause for the anomalous increase in traffic. 

IDS sensors can be effective at detecting Trojans installed on compromised 

machines. Trojans communicate with their command-andcontrol (C&C) servers 

to download updated configuration files and binaries, to receive commands to 

run on the infected systems, or to drop stolen data. The network activity 

generated by this communication usually uses a common protocol, such as 

HTTP, to avoid rejection from a firewall. Content-matching rules specifically 

created for the C&C communication can accurately detect Trojan infections. 

The example HTTP request discussed previously in this section was activity 

from a Trojan, and using the content match or regular expression in an IDS 

signature would successfully detect infected machines. Occasionally, malicious 

code authors omit fields or include additional fields to standard protocols 

within their code, which generates anomalous traffic, as seen in Exhibit 5-10. 

This allows an anomaly-based IDS signature to detect the C&C traffic easily by 

searching for these protocol abnormities. 

IDS devices detect a variety of threats to a network, but they do have issues 

that limit their effectiveness. IDS evasion is a concept that encompasses all 



techniques used to avoid detection during maliciousactivity. Varieties of 

techniques are available, but the most common evasion methods include 

obfuscation, encryption, compression, and traffic fragmentation. 

Obfuscation, encryption, and compression can evade detection from an IDS. 

IDS signatures searching for content as the result of malicious activity have 

difficulty matching if the known patterns change. Although obfuscation, 

encryption, and data compression are different in functionality and purpose, 

all three change the representation of data transmitted over the network. 

Obfuscation of data and exploit code evades detection through structural 

changes while retaining its original functionality through encoding, 

concatenation, and obscure variable and function names. 

Encryption of data or the network traffic itself can evade detection from an 

IDS. An IDS signature can detect malicious activity within unencrypted channels 

by searching for malicious content within cleartext data sent over the network; 

however, an IDS has difficulty detecting malicious activity within encrypted 

communications because it does not have the key to decrypt the cipher text 

into cleartext data. 

Compression changes the representation of data by passing it through an 

algorithm to reduce the size of the data. Compressing information is common 

for communication, as it requires less network bandwidth to transmit such 

information from one device to another. Evading the detection occurs when 

the sender compresses the data using a compression algorithm and sends the 

compressed data over the network to the destination. The destination uses a 

decompression algorithm to view the original data sent by the source. The IDS 

device sees the communication between the source and the destination but 

inspects the compressed data, which does not resemble the original data. 

Traffic fragmentation and reassembly can also evade IDS. Malicious activity 

split into multiple different packets and sent from the source to the 

destination requires the IDS to reassemble the fragmented packets before 

inspecting the traffic.28 For example, an attacker can spread the transmission 

of the attack’s payload across fifty packets. To detect the attack payload, the 

IDS sensor has to track and reassemble the fifty packets in memory and then 

scan the reassembled payload using the rule set. Many fragmentation 

techniques are available to further complicate IDS evasion, such as fragment 

overlapping,overwriting, and timeouts, but such techniques do not fit inside 

the scope of this book 



In addition to IDS evasion techniques, the network environment that the IDS 

sensor monitors can affect the sensor’s ability to detect malicious activity. 

Placement of the IDS sensor is key to monitoring the appropriate traffic. 

Overlooking sensor placement leads to visibility issues, as the sensor will not 

monitor the correct traffic 

Placement in high-traffic areas can severely affect the performance of the IDS 

sensor. Sensors in high-traffic environments require a great deal of hardware 

to perform packet inspections. Packet inspections become more resource 

intensive as the amount of traffic increases; if the sensor does not have 

enough resources, it will fail to detect the malicious traffic. This results in the 

IDS not creating an alert about the malicious activity. 

The rule set used by the IDS sensor also affects the sensor’s detection 

performance. To increase performance, each IDS vendor uses different rule set 

optimization techniques. Despite the optimization techniques used, the sensor 

checks all traffic monitored for signature matches. Checking traffic with a 

smaller set of rules will result in faster performance but fewer rules with which 

to detect malicious content. Larger rule sets will perform slower than a smaller 

set but have more rules for detecting malicious activity. This shows the need 

for compromise between speed and threat coverage. 

Threat coverage shows the need for another compromise. An overflow of 

alerts will dilute critical alerts and valuable information with low-priority alerts 

and useless data. This dilution caused by excess noise makes triaging alert 

investigation difficult. The rule set for a sensor needs constant attention and 

custom tuning to reduce the number of alerts about legitimate traffic. 

The last consideration for sensor placement involves inline devices. Inline 

devices physically sit between two network devices and have the ability to 

block malicious activity; however, legitimate traffic can also match signatures 

for malicious activity. This situation occurs often and results in the sensor 

blocking legitimate traffic. Another situation in which an IDS device can block 

traffic occurs when the sensors go offline or are overwhelmed with traffic. If 

the device does not fail to open in the event of system failure, then the device 

willblock all traffic at its network interface. The inline device will also drop 

traffic if it exceeds its processing power 

Despite the issues facing IDSs, they are still beneficial to the security of a 

network. Proper consideration to the network environment that the IDS sensor 



will monitor is a must. An appropriate operating environment can reduce the 

issues previously discussed that plague a sensor’s ability to detect malicious 

activity. Supplementing a proper network environment with continuous 

updates and tuning of the sensor’s rule set will provide excellent coverage for a 

majority of malicious events. 

IDS devices provide an invaluable stream of information to aid in security 

investigations and to improve the overall security of a network. IDS sensors can 

improve security by detecting a network’s vulnerable areas and inbound 

attacks that can threaten the network. In cases involving an inline sensor, an 

IDS device can greatly improve network security by blocking malicious activity 

before it performs malice 

Luckily, the vast majority of inbound attempts to compromise systems do not 

use the IDS evasion techniques discussed in this section. Attackers overlooking 

evasion techniques allow IDS sensors to remain a viable monitoring solution. 

IDS can also detect compromised hosts based on network activity; however, 

the coverage for threats requires auditing to make sure the IDS detects 

malicious traffic. An IDS can provide a false sense of security if a signature 

exists for a threat but does not properly generate an alert in the event of its 

occurrence. 


