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Classification and clustering

I. Classification and 

prediction

II. Clustering and 

similarity
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• What is classification? What is 

prediction?

• Decision tree induction

• Bayesian classification

• Other classification methods

• Classification accuracy

• Summary

Classification and prediction

Overview
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• Aim: to predict categorical class 

labels for new tuples/samples

• Input: a training set of 

tuples/samples, each with a class 

label

• Output: a model (a classifier) 

based on the training set and the 

class labels

What is classification?
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Typical classification applications

• Credit approval

• Target marketing

• Medical diagnosis

• Treatment effectiveness 

analysis

Applications
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• Is similar to classification

o constructs a model

o uses the model to predict 

unknown or missing values

• Major method: regression

o linear and multiple regression

o non-linear regression

What is prediction?
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• Classification:

o predicts categorical class labels

o classifies data based on the training set and the values 

in a classification attribute and uses it in classifying 

new data

• Prediction:

o models continuous-valued functions 

o predicts unknown or missing values

Classification vs. prediction
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• Classification = supervised learning

o training set of tuples/samples 

accompanied by class labels

o classify new data based on the training 

set

• Clustering = unsupervised learning

o class labels of training data are 

unknown

o aim in finding possibly existing classes 

or clusters in the data

Terminology
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1. step:

Model construction, i.e., 

build the model from the 

training set

2. step:

Model usage, i.e., check the 

accuracy of the model  and 

use it for classifying new 

data

Classification - a two step process

It’s a 2-step

process!



14.11.2001 Data mining: Classification 9

Model construction

• Each tuple/sample is assumed to 

belong a prefined class

• The class of a tuple/sample is 

determined by the class label 

attribute

• The training set of tuples/samples is

used for model construction

• The model is represented as

classification rules, decision trees or

mathematical formulae

Step 1
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• Classify future or unknown objects

• Estimate accuracy of the model

o the known class of a test 

tuple/sample is compared with the 

result given by the model

o accuracy rate = precentage of the 

tests tuples/samples correctly 

classified by the model

Model usage

Step 2
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An example: model construction

Training
Data

NAME RANK YEARS TENURED

Mary Assistant Prof 3 no

James Assistant Prof 7 yes

Bill Professor 2 no

John Associate Prof 7 yes

Mark Assistant Prof 6 no

Annie Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = yes

Classifier
(Model)
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An example: model usage

Testing
Data

Classifier

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Lisa Associate Prof 7 no

Jack Professor 5 yes

Ann Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

Yes
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• Data cleaning

o noise

o missing values

• Relevance analysis 

(feature selection)

• Data transformation

Data Preparation
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• Accuracy

• Speed

• Robustness

• Scalability

• Interpretability

• Simplicity

Evaluation of 

classification methods
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Decision tree induction

A decision tree is a tree where

• internal node = a test on an 

attribute

• tree branch = an outcome of 

the test

• leaf node = class label or 

class distribution

A?

B? C?

D? Yes
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Decision tree generation

Two phases of decision tree generation:

• tree construction

o at start, all the training examples at the root

o partition examples based on selected attributes

o test attributes are selected based on a heuristic or a 

statistical measure

• tree pruning

o identify and remove branches that reflect noise or 

outliers
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Decision tree induction –

Classical example: play tennis?

Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

Training set 

from 

Quinlan’s 

ID3
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Decision tree obtained with ID3 
(Quinlan 86)

outlook

overcast

humidity windy

high normal falsetrue

sunny rain

P

PN N P
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From a decision tree 

to classification rules

• One rule is generated for 

each path in the tree from 

the root to a leaf

• Each attribute-value pair 

along a path forms a 

conjunction

• The leaf node holds the 

class prediction

• Rules are generally simpler 

to understand than trees

IF outlook=sunny

AND humidity=normal

THEN play tennis

outlook

overcast

humidity windy

high normal falsetrue

sunny rain

P

PN N P
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Decision tree algorithms

• Basic algorithm

o constructs a tree in a top-down recursive divide-

and-conquer manner

o attributes are assumed to be categorical

o greedy (may get trapped in local maxima)

• Many variants: ID3, C4.5, CART, CHAID

o main difference: divide (split) criterion / attribute 

selection measure



14.11.2001 Data mining: Classification 21

Attribute selection measures

• Information gain

• Gini index

• 2 contingency table 

statistic

• G-statistic
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Information gain (1)

• Select the attribute with the highest information 

gain

• Let P and N be two classes and S a dataset with p

P-elements and n N-elements

• The amount of information needed to decide if an 

arbitrary example belongs to P or N is 
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Information gain (2)

• Let sets {S1, S2 , …, Sv} form a partition of the set S, when 

using the attribute A

• Let each Si contain pi examples of P and ni examples of N

• The entropy, or the expected information needed to 

classify objects in all the subtrees Si is

• The information that would be gained by branching on A is
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Information gain – Example (1)

Assumptions:

• Class P: plays_tennis = “yes”

• Class N: plays_tennis = “no”

• Information needed to classify 

a given sample:

940.0)5,9(),( == InpI
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Information gain – Example (2)

Compute the entropy for 

the attribute outlook:

outlook pi ni I(pi, ni)

sunny 2 3 0,971

overcast 4 0 0

rain 3 2 0,971
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Other criteria used in decision tree 

construction

• Conditions for stopping partitioning

o all samples belong to the same class

o no attributes left for further partitioning => majority 

voting for classifying the leaf

o no samples left for classifying

• Branching scheme

o binary vs. k-ary splits

o categorical vs. continuous attributes

• Labeling rule: a leaf node is labeled with the class to 

which most samples at the node belong
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Overfitting in 

decision tree classification

• The generated tree may overfit the 

training data

o too many branches

o poor accuracy for unseen samples

• Reasons for overfitting

o noise and outliers

o too little training data

o local maxima in the greedy search
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How to avoid overfitting?

Two approaches:

• prepruning: Halt tree 

construction early

• postpruning: Remove branches 

from a “fully grown” tree
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Classification in Large Databases

• Scalability: classifying data sets with millions of 

samples and hundreds of attributes with reasonable 

speed

• Why decision tree induction in data mining?

o relatively faster learning speed than other methods

o convertible to simple and understandable 

classification rules

o can use SQL queries for accessing databases

o comparable classification accuracy
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Scalable decision tree induction 

methods in data mining studies

• SLIQ (EDBT’96 — Mehta et 

al.)

• SPRINT (VLDB’96 — J. 

Shafer et al.)

• PUBLIC (VLDB’98 — Rastogi 

& Shim)

• RainForest (VLDB’98 —

Gehrke, Ramakrishnan & Ganti)
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Bayesian Classification: Why? (1)

• Probabilistic learning:  

o calculate explicit probabilities for hypothesis

o among the most practical approaches to certain types 

of learning problems

• Incremental: 

o each training example can incrementally 

increase/decrease the probability that a hypothesis is 

correct  

o prior knowledge can be combined with observed data
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Bayesian Classification: Why? (2)

• Probabilistic prediction:  

o predict multiple hypotheses, weighted by their 

probabilities

• Standard: 

o even when Bayesian methods are computationally 

intractable, they can provide a standard of optimal 

decision making against which other methods can be 

measured
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Bayesian classification

• The classification problem may be formalized using

a-posteriori probabilities:

P(C|X)  = probability that the sample tuple

X=<x1,…,xk> is of the class C

• For example

P(class=N | outlook=sunny,windy=true,…)

• Idea: assign to sample X the class label C such that 

P(C|X) is maximal
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Estimating a-posteriori probabilities

• Bayes theorem:

P(C|X) = P(X|C)·P(C) / P(X)

• P(X) is constant for all classes

• P(C) = relative freq of class C samples

• C such that P(C|X) is maximum = 

C such that P(X|C)·P(C) is maximum

• Problem: computing P(X|C) is unfeasible!
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Naïve Bayesian classification

• Naïve assumption: attribute independence

P(x1,…,xk|C) = P(x1|C)·…·P(xk|C)

• If i-th attribute is categorical:

P(xi|C) is estimated as the relative frequency of samples 

having value xi as i-th attribute in the class C

• If i-th attribute is continuous:

P(xi|C) is estimated thru a Gaussian density function

• Computationally easy in both cases
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Naïve Bayesian classification –

Example (1)

• Estimating P(xi|C) P(p) = 9/14

P(n) = 5/14

Outlook

P(sunny | p) = 2/9 P(sunny | n) = 3/5

P(overcast | p) = 4/9 P(overcast | n) = 0

P(rain | p) = 3/9 P(rain | n) = 2/5

Temperature

P(hot | p) = 2/9 P(hot | n) = 2/5

P(mild | p) = 4/9 P(mild | n) = 2/5

P(cool | p) = 3/9 P(cool | n) = 1/5

Humidity

P(high | p) = 3/9 P(high | n) = 4/5

P(normal | p) = 6/9 P(normal | n) = 1/5

Windy

P(true | p) = 3/9 P(true | n) = 3/5

P(false | p) = 6/9 P(false | n) = 2/5
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Naïve Bayesian classification –

Example (2)

• Classifying X:

o an unseen sample X = <rain, hot, high, false>

o P(X|p)·P(p) = 

P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = 

3/9·2/9·3/9·6/9·9/14 = 0.010582

o P(X|n)·P(n) = 

P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) = 

2/5·2/5·4/5·2/5·5/14 = 0.018286

o Sample X is classified in class n (don’t play)
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Naïve Bayesian classification –
the independence hypothesis

• … makes computation possible

• … yields optimal classifiers when satisfied

• … but is seldom satisfied in practice, as attributes 

(variables) are often correlated.

• Attempts to overcome this limitation:

o Bayesian networks, that combine Bayesian reasoning 

with causal relationships between attributes

o Decision trees, that reason on one attribute at the 

time, considering most important attributes first
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Other classification methods

(not covered)

• Neural networks

• k-nearest neighbor classifier

• Case-based reasoning

• Genetic algorithm

• Rough set approach

• Fuzzy set approaches

More 

methods
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Classification accuracy

Estimating error rates:

• Partition: training-and-testing (large data sets)

o use two independent data sets, e.g., training set (2/3), 

test set(1/3)

• Cross-validation (moderate data sets)

o divide the data set into k subsamples

o use k-1 subsamples as training data and one sub-sample 

as test data --- k-fold cross-validation

• Bootstrapping: leave-one-out (small data sets)
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• Classification is an 

extensively studied problem 

• Classification is probably 

one of the most widely used 

data mining techniques with 

a lot of extensions

Summary (1)
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• Scalability is still an 

important issue for 

database applications

• Research directions: 

classification of non-

relational data, e.g., text, 

spatial and multimedia

Summary (2)
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Thanks to 
Jiawei Han from Simon Fraser University 

for his slides which greatly helped 
in preparing this lecture! 

Also thanks to 

Fosca Giannotti and Dino Pedreschi from Pisa 

for their slides of classification.

Course on Data Mining
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