Ny -

L

Finite State Machine

A finite-state machine (FSM) or finite-state automaton (FSA,
plural: automata), finite automaton, or simply a state machine, is a
mathematical model of computation.

The FSM can change from one state to another in response to

some inputs; the change from one state to another is called

a transition.

An FSM is defined by a list of its states, its initial state, and the inputs
that trigger each transition.

Finite-state machines are of two types — deterministic finite-state
machines and non-deterministic finite-state machines.

A deterministic finite-state machine can be constructed equivalent to
any non-deterministic one.

* The finite-state machine has less computational power than some other models of
computation such as the Turing machine.

* The computational power distinction means there are computational tasks that a Turing
machine can do but an FSM cannot.

» This is because an FSM's memory is limited by the number of states it has. FSMs are
studied in the more general field of automata theory.

Auromans theory

[Combinational logi /»

Finnte-state machine

Pushdown automaton

Tunag Machine

Classes of automata

CONCEPTS AND TERMINOLOGY

* A state is a description of the status of a system that is waiting to execute
a transition.
A transition is a set of actions to be executed when a condition is fulfilled or when an
event is received.
* For example, when using an audio system to listen to the radio (the system is in the
"radio" state), receiving a "next" stimulus results in moving to the next station.
* When the system is in the "CD" state, the "next" stimulus results in moving to the
next track. Identical stimuli trigger different actions depending on the current state.
* In some finite-state machine representations, it is also possible to associate actions
with a state:
1. an entry action: performed when entering the state, and
2. an exit action: performed when exiting the state.

REPRESENTATIONS

STATE/EVENT TABLE

* Several state-transition table types are used.

* The most common representation is shown below: the combination of
current state (e.g. B) and input (e.g. Y) shows the next state (e.g. C).

* The complete action's information is not directly described in the table
and can only be added using footnotes.

* An FSM definition including the full actions information is possible
using state tables (see also virtual finite-state machine).

Current state Input State A State B Sate €
Inpua X - . B
Inpt Y = St € "

Input 2

UML STATE MACHINES

The Unified Modeling Language has a notation for describing state
machines.

UML state machines overcome the limitations of traditional finite-state
machines while retaining their main benefits.

UML state machines introduce the new concepts of hierarchically nested
states and orthogonal regions, while extending the notion of actions.
UML state machines have the characteristics of both Mealy

machines and Moore machines.

They support actions that depend on both the state of the system and the
triggering event, as in Mealy machines, as well as entry and exit actions,
which are associated with states rather than transitions, as in Moore
machines.

SDL STATE MACHINES

The Specification and Description Language is a standard from ITU that
includes graphical symbols to describe actions in the transition:

send an event

receive an event

start a timer

cancel a timer

start another concurrent state machine

. decision

SDL embeds basic data types called "Abstract Data Types", an action
language, and an execution semantic in order to make the finite-state
machine executable.

R

USAGE

In addition to their use in modeling reactive systems presented here, finite-
state machines are significant in many different areas, including electrical
engineering, linguistics, computer science, philosophy, biology,
mathematics, video game programming, and logic.

Finite-state machines are a class of automata studied in automata theory and
the theory of computation.

In computer science, design of hardware digital systems, software
engineering, compilers, network protocols, and the study of computation and
languages.

MOORE MACHINE

* The FSM uses only entry actions, i.e., output depends only on state. The
advantage of the Moore model is a simplification of the behaviour.

* Consider an elevator door. The state machine recognizes two commands:
"command open" and "command_close", which trigger state changes. The
entry action (E:) in state "Opening" starts a motor opening the door, the
entry action in state "Closing" starts a motor in the other direction closing
the door.

* States "Opened" and "Closed" stop the motor when fully opened or
closed.

* They signal to the outside world (e.g., to other state machines) the
situation: "door is open" or "door is closed".

MEALY MACHINE

* The FSM also uses input actions, i.e., output depends on input and state.
The use of a Mealy FSM leads often to a reduction of the number of
states.

* The example in figure 9.1.1.79.1.1.7 shows a Mealy FSM implementing
the same behaviour as in the Moore example (the behaviour depends on
the implemented FSM execution model and will work, e.g., for virtual
FSM but not for event-driven FSM).

* There are two input actions (I:): "start motor to close the door if
command_close arrives" and "start motor in the other direction to open
the door if command_open arrives".

* The "opening" and "closing" intermediate states are not shown.

SEQUENCERS

* Sequencers (also called generators) are a subclass of acceptors and transducers
that have a single-letter input alphabet.

* They produce only one sequence which can be seen as an output sequence of
acceptor or transducer outputs.

DETERMINISM

» A further distinction is between deterministic (DFA) and non-
deterministic (NFA, GNFA) automata. In a deterministic automaton, every state
has exactly one transition for each possible input.

* In a non-deterministic automaton, an input can lead to one, more than one, or no
transition for a given state.

The powerset construction algorithm can transform any nondeterministic
automaton into a (usually more complex) deterministic automaton with
identical functionality.

A finite-state machine with only one state is called a "combinatorial FSM".
[t only allows actions upon transition into a state.

This concept is useful in cases where a number of finite-state machines are
required to work together, and when it is convenient to consider a purely
combinatorial part as a form of FSM to suit the design tools.

ALTERNATIVE SEMANTICS

* There are other sets of semantics available to represent state
machines.

* For example, there are tools for modeling and designing logic for
embedded controllers.

* They combine hierarchical state machines (which usually have more
than one current state), flow graphs, and truth tables into one
language, resulting in a different formalism and set of semantics.

* These charts, like Harel's original state machines, support
hierarchically nested states, orthogonal regions, state actions, and
transition actions.

MATHEMATICAL MODEL

* In accordance with the general classification, the following formal
definitions are found.

* Adeterministic finite-state machine or deterministic finite-state
acceptor is a quintuple (Z,S,s0,06,F)(Z,S,50,8,F), where:

* I is the input alphabet (a finite non-empty set of symbols);

* S is a finite non-empty set of states;

* 0 is an initial state, an element of SS:

* 30 is the state-transition function: §:SxX—S§:SxX—S (in
a nondeterministic finite automaton it would
be 6:SxX—P(S)0:SxX—P(S), i.e. 36 would return a set of states);

* FF is the set of final states, a (possibly empty) subset of S.

[f an FSM MM is in a state ss, the next symbol is xx and 8(s,x)d(s,x) is not
defined, then MM can announce an error (i.e. reject the input).

This is useful in definitions of general state machines, but less useful when
transforming the machine.

Some algorithms in their default form may require total functions.

A finite-state machine has the same computational power as a Turing
machine that is restricted such that its head may only perform "read"
operations, and always has to move from left to right.

That is, each formal language accepted by a finite-state machine is accepted
by such a kind of restricted Turing machine, and vice versa.

A finite-state transducer is a sextuple (Z,I,S,50,0,0)(Z,I,S,50,0,w),
where:

+X¥ is the input alphabet (a finite non-empty set of symbols);

['T" is the output alphabet (a finite non-empty set of symbols):
+SS is a finite non-empty set of states;

+*s0s0 is the initial state, an element of SS;

*30 is the state-transition function: §:SxX—S35:SxX—S;

*m® is the output function.

[f the output function depends on the state and input symbol
(0:S¥E—-T®:SxE—TI) that definition corresponds to the Mealy model,
and can be modelled as a Mealy machine.

If the output function depends only on the state (0:S—T"'®:S—T) that
definition corresponds to the Moore model, and can be modelled as

a Moore machine. A finite-state machine with no output function at all is
known as a semiautomaton or transition system.

If we disregard the first output symbol of a Moore machine, (s0)w(s0),
then it can be readily converted to an output-equivalent Mealy machine
by setting the output function of every Mealy transition (i.e. labeling
every edge) with the output symbol given of the destination Moore
state.

SOFTWARE APPLICATIONS

The following concepts are commonly used to build software applications
with finite-state machines:

*Automata-based programming

*Event-driven finite-state machine

*Virtual finite-state machine

*State design pattern

FINITE-STATE MACHINES AND COMPILERS

Finite automata are often used in the frontend of programming language
compilers. Such a frontend may comprise several finite-state machines
that implement a lexical analyzer and a parser.

Starting from a sequence of characters, the lexical analyzer builds a
sequence of language tokens (such as reserved words, literals, and
identifiers) from which the parser builds a syntax tree.

The lexical analyzer and the parser handle the regular and context-free
parts of the programming language's grammar.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

