

SNS COLLEGE OF TECHNOLOGY

SIS

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

16IT AUGMENTED REALITY AND VIRTUAL REALITY

III YEAR – V SEM

UNIT 4 – INTERACTIVE TECHNIQUES AND TOOLS

TOPIC 1 – Multiple models of input and output interface

What is virtual reality?

- a way to visualise, manipulate, and interact with a virtual environment
- visualise
 - the computer generates visual, and auditory outputs
- manipulate
 - manipulate objects in this virtual world
- interact
 - real time manipulation, feedback from the environment

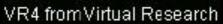
The environment could be

- simulated real world
- fantasy world
- data, research

VR applications

- entertainment
 - games
 - simulated real world, fantasy
- architectural planning, modelling
 - business modelling
 - visualising the fluctuations in the stock market
- tourism & advertising go where you can't go
- new statistical software, data representation in 3D
- telepresence
 - medical, remote operations
- scientific simulations
 - submarine captains
 - chemistry

Simulators


- the virtual world
 - long history, as early as 30s
- aircraft, flight simulators
- tank simulators
 - cost effective training
- submarine simulators

VR user interface 1

- computer interface
 - virtual reality on normal computer monitor
 - can be traced back to 60s
- immersive interface
 - Head Mounted Display (HMD) next slide
 - helmet or face mask
 - visual and auditory output
- large projection displays
 - picture theatres wide screen
 - VR glasses expensive production

HEADMOUNTED DISPLAYS (HMD) and 3D GLASSES

i-glasses! from Virtual i-O

SIMULEYES from StereoGraphics

VR user interface 2

- telepresence
 - remote sensors in the real world
 - video camera
 - connected to senses of human in other environment
 - control a robot
 - bomb disposal
 - radioactive material
 - fire fighters
 - surgery
 - space exploration

Control devices

- glove
 - fitted with sensor on fingers as well as position and orientation sensors
- mouse, joystick
 - 3D
 - 6D ball mounted on stick can twist in addition to normal joystick movement
- full body suits
 - position and bends sensors all over suit
 - also used for character animation and sport

Stereo Vision

- not in all systems
- create a slightly different image for each eye to give the perception of depth
 - high refresh rates required
 - Australian Army working on holographic projection
- consumer models (3D glasses) available
- head mounted displays often used
 - some users have visual problems (blurred vision) after using head mounted displays

Rendering visual rendering

- - 20 to 60 frames per second required
 - shading, lighting, surface texture
 - computer intensive
- auditory rendering
 - sounds get louder as get closer
 - sounds come from apparent source
- haptic rendering
 - generating the sensation of touch
 - chemical reaction simulations
 - telepresence, robot arms
 - current research
- motion rendering
 - simulators

- a cross-platform standard for imagebased VR
- pre-rendered from photographs or computer generated images
- high level of image quality on low end machines
- limited environment because it is predefined

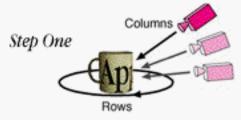
- Panoramas
 - wide image, often 360°
 - from photographs, or computer generated
- Objects
 - series of views of an object from different angles

Making panoramas

Step Three

The flat images are 'tiled', compressed and saved in the QuickTime VR file format which is viewed through a window provided by the QuickTime VR extension. When the user pans and zooms, the window images different parts of the panorama.

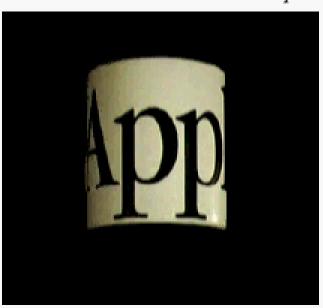
Step One


Photographic panoramas are captured by shooting a series of images with a still camera.

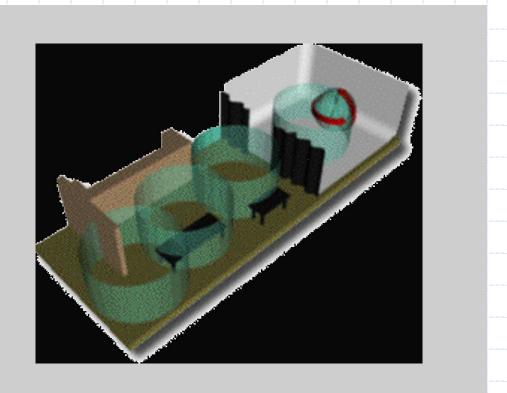
Step Two

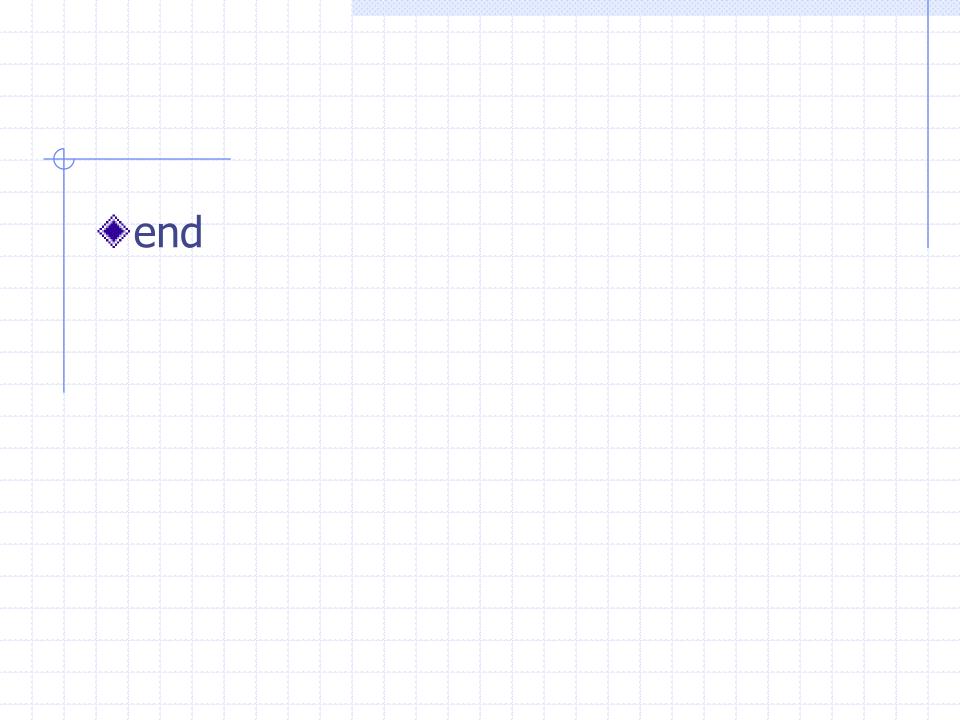
These images are 'stitched' together by the QuickTime VR software into a seamless panorama.

Creating VR objects appropriate view.


The images are organized into rows and columns: one row for each horizontal spin of the object, and 1 column for each step of that spin.

Step Two


Object movies can be captured with a still or video camera, sometimes with a specialized rig. Objects can also be easily created in 3D software. QuickTime VR Objects consist of a series of images covering different views of an object. When the user pans and tilts the object, the software displays the appropriate view.


Step Three

The images are stored in a standard QuickTime movie, and then converted to an object movie using the QuickTime VR authoring tools.

worlds can be linked together

