SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC - UGC with A+ Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL \& ELECTRONICS ENGINEERING

Network Modelling

19EET302 - Power System 1 III year / V Semester

INTRODUCTION

Bus Frame Analysis

FORMATION OF Y BUS AND Z BUS

1. Rule of Inspection
2. Singular Transformation
3. Non-Singular Transformation
4. ZBUS Building Algorithms, etc

Frames of Reference

Bus Frame of Reference: There are b independent equations ($b=n o$. of buses) relating the bus vectors of currents and voltages through the bus impedance matrix and bus admittance matrix:

$$
\begin{aligned}
& V B U S=Z B U S ~ I B U S \\
& I B U S=Y B U S \text { VBUS }
\end{aligned}
$$

Branch Frame of Reference: There are b independent equations ($b=n o$. of branches of a selected Tree sub-graph of the system Graph) $\quad V B R=Z B R I B R$

$$
I B R=Y B R \vee B R
$$

Loop Frame of Reference: There are b independent equations ($b=n o$. of branches of a selected Tree sub-graph of the system Graph)

$$
\begin{aligned}
& \text { VLOOP = ZLOOP ILOOP } \\
& \text { ILOOP = YLOOP VLOOP }
\end{aligned}
$$

Of the various network matrices refered above,
the bus admittance matrix (YBUS) and the bus impedance matrix (ZBUS) are determined for a given power system
07.12 .2020
$16 E E 304$ / PSA / S.Bharath / AP -EEE

Rule of Inspection

Consider the 3-node admittance network as shown in figure5. Using the basic branch relation: $1=(\mathrm{YV})$, for all the elemental currents and applying Kirchhoff's Current Law principle at the nodal points, we get the relations as under:

$$
\begin{aligned}
& \text { At node } 1: 11=Y 1 V 1+Y 3(V 1-V 3)+Y 6(V 1-V 2) \\
& \text { At node } 2: 12=Y 2 V 2+Y 5(V 2-V 3)+Y 6(V 2-V 1) \\
& \text { At node } 3: 0=Y 3(V 3-V 1)+Y 4 V 3+Y 5(V 3-V 2)
\end{aligned}
$$

-Inspection Method

$0\left|\begin{array}{l}\mathrm{I}_{1} \\ \mathrm{I}_{2} \\ 0\end{array}\right|=\left|\begin{array}{ccc}\left(\mathrm{Y}_{1}+\mathrm{Y}_{3}+\mathrm{Y}_{6}\right) & -\mathrm{Y}_{6} & -\mathrm{Y}_{3} \\ -\mathrm{Y}_{6} & \left(\mathrm{Y}_{2}+\mathrm{Y}_{5}+\mathrm{Y}_{6}\right) & -\mathrm{Y}_{5} \\ -\mathrm{Y}_{3} & -\mathrm{Y}_{5} & \left(\mathrm{Y}_{3}+\mathrm{Y}_{4}+\mathrm{Y}_{5}\right)\end{array}\right|\left|\begin{array}{c}\mathrm{V}_{1} \\ \mathrm{~V}_{2} \\ \mathrm{~V}_{3}\end{array}\right|$
$I B U S=Y B U S V B U S$
Where, YBUS is the bus admittance matrix, IBUS \& VBUS are the bus current and bus voltage vectors respectively.

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix, YBUS, is equal to the sum total of the admittance values of all the elements incident at the bus/node i,

Off Diagonal elements: An off-diagonal element (Yij) of the bus admittance matrix, YBUS, is equal to the negative of the admittance value of the connecting element present between the buses I and j, if any.

- Obtain the bus admittance matrix for the admittance network shown aside by the rule of inspection

$$
Y_{\text {BUS }}=\left|\begin{array}{ccc}
16 & -8 & -4 \\
-8 & 24 & -8 \\
-4 & -8 & 16
\end{array}\right|
$$

Problem 1

Activity

KEEP
 LEARNING.. Thanku

SEE YOU IN NEXT CLASS
,

