

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

II YEAR / III SEMESTER

UNIT-2: MULTI JUNCTION DEVICES

MOSFET

What We'll Discuss

TOPIC OUTLINE

What is MOSFET
Symbols
Classification
Structure and operation
Applications

MOSFET

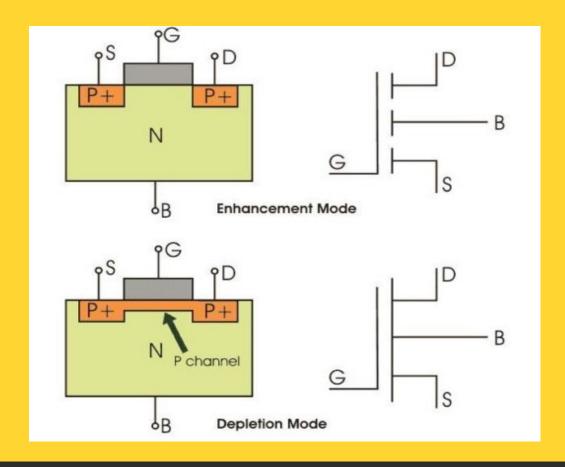
- IGFET
- These are voltage controlled devices, in which the current flowing between source and drain is proportional to the provided input voltage.
- MOSFET has a smaller value of capacitance and its input impedance is much more than that of FET due to small leakage current.
- It finds application widely in switching and amplification of electronic signals because of its ability to change conductivity with the applied voltage.



Symbol

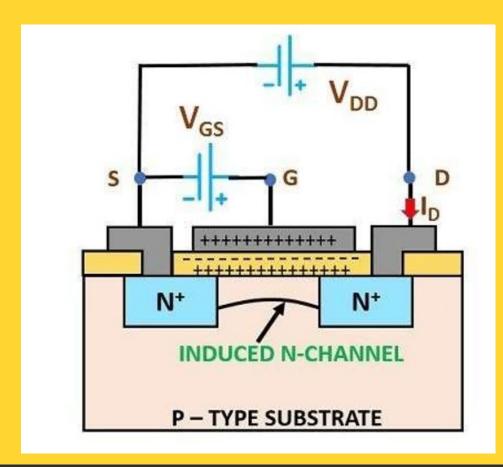
Classification

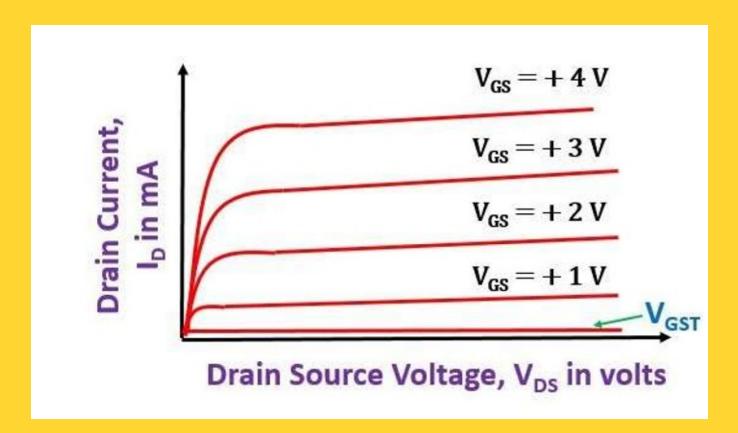
- MOSFET works in two modes-
- 1. Depletion Mode: The transistor requires the Gate-Source voltage (VGS) to switch the device "OFF". The depletion-mode MOSFET is equivalent to a "Normally Closed" switch.



- 2. Enhancement Mode: The transistor requires a Gate-Source voltage(VGS) to switch the device "ON". The enhancement mode MOSFET is equivalent to a "Normally Open" switch.
- Now with respect to the working principle, MOSFET is classified as follows:
- P-Channel Depletion MOSFET
- P-Channel Enhancement MOSFET
- N-Channel Depletion MOSFET
- N-Channel Enhancement MOSFET

P-Channel MOSFET





Characteristic Curve of Enhancement MOSFET

TERMS	ВЈТ	FET	MOSFET
Device type	Current controlled	Voltage controlled	Voltage Controlled
Current flow	Bipolar	Unipolar	Unipolar
Terminals	Not interchangeable	Interchangeable	Interchangeable
Operational modes	No modes	Depletion mode only	Both Enhancement and Depletion modes
Input impedance	Low	High	Very high
Output resistance	Moderate	Moderate	Low
Operational speed	Low	Moderate	High
Noise	High	Low	Low
Thermal stability	Low	Better	High

Applications

- Amplifiers
- Regulation for DC Motors
- Constructions of Chopper Amplifiers
- Switching and Amplifying Signals
- Example of MOSFET as a Switch

ASSESSMENT

1.If a MOSFET is to be used in the making of an amplifier then it must work in

- a) Cut-off region
- b) Triode region
- c) Saturation region
- d) Both cut-off and triode region can be used

Answer: c

Explanation: Only in the saturation region a

MOSFET can operate as an amplifier.

2. For MOSFET is to be used as a switch then it must operate in

- a) Cut-off region
- b) Triode region
- c) Saturation region
- d) Both cut-off and triode region can be used

Answer: d

Explanation: In both regions it can perform

the task of a switch.

THANK YOU