

## **SNS COLLEGE OF TECHNOLOGY**

**Coimbatore-35 An Autonomous Institution** 

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

## **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING**

### **19ECB201 – ANALOG ELECTRONIC CIRCUITS**

II Year B.E.ECE - III Semester

**TOPIC-LC OSCILLATORS** 







### **OSCILLATOR (RECAP)**

 $\geq$ Oscillators convert a DC input (the supply voltage) into an AC output (the waveform), which can have a wide range of different wave shapes and frequencies

To operate as an oscillator, it must have the following three characteristics.

Some form of Amplification

 $\geq$  Positive Feedback (regeneration)

>A Frequency determine feedback network







### **Application of Oscillators (FM Transmitter)**







### **CLASSIFICATION OF OSCILLATORS**









### **LC OSCILLATORS**

➤The oscillators which use the elements L and C to produce the oscillations are called LC oscillators These oscillators are used for high frequency range from 200 kHz up to few GHz.







### Why LC oscillators?

### > Why LC oscillator is better than RC oscillator?

>LC oscillators are preferred at higher frequencies because of their high-Quality factor and a wider range of frequencies.

 $\succ$ LC oscillators offer greater stability, and produce sinusoidal waveforms with fewer harmonics.

 $\succ$ LC circuit is used for generating high frequency because as the frequency goes higher and higher, physical size of LC also becomes smaller.

 $\succ$  LC oscillators can be designed using OP-AMP and Transistors.







12/3/202

The capacitor stores energy in the form of an electrostatic field and which produces a potential (static voltage) across its plates, while the inductive coil stores its energy in the form of an electromagnetic field.





 $\succ$  The capacitor is charged up to the DC supply voltage, V by putting the switch in position 1.

 $\succ$  When the capacitor is fully charged the switch changes to position 2.







 $\succ$  The charged capacitor is now connected in parallel across the inductive coil so the capacitor begins to discharge itself through the coil.

 $\succ$  The voltage across C starts falling as the current through the coil begins to rise. This rising current sets up an electromagnetic field around the coil which resists this flow of current.









>When the capacitor, C is completely discharged the energy that was originally stored in the capacitor, C as an electrostatic filed is now stored in the inductive coil, L as an electromagnetic field around the coils windings.

>As there is now no external voltage in the circuit to maintain the current within the coil, it starts to fall as the electromagnetic field begins to collapse.







### **Tuned circuit**

 $\triangleright$ A back emf is induced in the coil (e=-Ldi/dt) keeping the current flowing in the original direction.

 $\succ$  This current now charges up the capacitor, c with the opposite polarity to its original charge.

Capacitor continues to charge up until the current reduces to zero and the electromagnetic field of the coil has collapsed completely.

 $\succ$  The capacitor now starts to discharge again back through the coil and the whole process so repeated.

 $\succ$  The polarity of the voltage changes as the energy is passed back and forth between the capacitor and inductor producing an AC type sinusoidal voltage and current waveform.





### **Tank circuit working**



12/3/2023



+++





13/22



### **TYPES OF LC OSCILLATORS**

LC oscillators ≻Hartley ➤Colpitts ≻Crystal

> LC OSCILLATORS/19ECB201-ANALOG ELECTRONIC CIRCUITS/S.RAJA/ECE/SNSCT







14/22



### Hartley oscillator

- $\succ$  Hartley Oscillator is a device that generates oscillatory output (sinusoidal).
- Figure It uses two inductive reactance and one capacitive reactance in its feedback network.
- $\succ$  It consists of an amplifier linked to an oscillatory circuit, also called LC circuit or tank circuit. The function of tank circuit is to tune a certain frequency.
- $\succ$  However they can also be designed to produce oscillations in the low audio frequency range. But for the low-frequency operation, the inductors used will be very large in value, i.e of milli Henrie range and hence very large in physical size.



### Hartley oscillator





12/3/2023

LC OSCILLATORS /19ECB201– ANALOG ELECTRONIC CIRCUITS/R.POORNIMA/ECE/SNSCT





### **Working of Hartley oscillator**

- $\succ$  When the collector supply is given, a transient current is produced in the oscillatory or tank circuit. The oscillatory current in the tank circuit produces a.c. voltage across L1.
- $\triangleright$  As the CE configured transistor provides 180° phase shift, another 180° phase shift is provided by the tank circuit, which makes 360° phase shift between the input and output voltages.

ELECTRONIC CIRCUITS/S.RAJA/ECE/SNSCT

 $\succ$  This makes the feedback positive which is essential for the condition of oscillations. When the loop gain  $|\beta A|$  of the amplifier is greater than one, oscillations are sustained in the circuit.





### **Applications**

- $\succ$  The Hartley oscillator is to produce a sine wave with the desired frequency
- > Hartley oscillators are mainly used as radio receivers. Also note that due to its wide range of frequencies, it is the most popular oscillator
- The Hartley oscillator is Suitable for oscillations in RF (Radio-Frequency) range, up to 30MHZ

LC OSCILLATORS/19ECB201-ANALOG ELECTRONIC CIRCUITS/S.RAJA/ECE/SNSCT





### **LC Oscillators Summary**

- ➢ For oscillations to exist an oscillator circuit must contain a reactive (frequency dependant) component either an "Inductor", (L) or a "Capacitor", (C) as well as a DC power source.
- ➢In a simple inductor-capacitor, LC circuit, oscillations become damped over time due to component and circuit losses.
- Voltage amplification is required to overcome these circuit losses and provide positive gain.
- The overall gain of the amplifier must be greater than one, unity.
  Oscillators/19ECB201- ANALOG
  Oscillations can be maintained by feeding back some of the output
- Oscillations can be maintained by feeding back voltage to the
- $\succ$  tuned circuit that is of the correct amplitude and in-phase, (0°).





### ASSESSMENT

An inductance of 200mH and a capacitor of 10pF are connected 1. together in parallel to create an LC oscillator tank circuit. Calculate the frequency of oscillation

12/3/202

LC OSCILLATORS/19ECB201-ANALOG ELECTRONIC CIRCUITS/S.RAJA/ECE/SNSCT

LC OSCILLATORS /19ECB201- ANALOG ELECTRONIC CIRCUITS/R.POORNIMA/ECE/SNSCT





### ASSESSMENT

1. An inductance of 200mH and a capacitor of 10pF are connected together in parallel to create an LC oscillator tank circuit. Calculate the frequency of oscillation



12/3/202

LC OSCILLATORS/19ECB201-ANALOG ELECTRONIC CIRCUITS/S.RAJA/ECE/SNSCT

LC OSCILLATORS /19ECB201- ANALOG ELECTRONIC CIRCUITS/R.POORNIMA/ECE/SNSCT



## = 112.5 kHz

21/22



# THANK YOU

12/3/2023

LC OSCILLATORS/19ECB201- ANALOG ELECTRONIC CIRCUITS/S.RAJA/ECE/SNSCT

