
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Re-accredited by NAAC with A+ grade, Accredited by NBA(CSE, IT, ECE, EEE & Mechanical)
Approvedy by AICTE, New Delhi, Recognized by UGC, Affiliated to Anna University, Chennai

GRAPHICS & ANIMATION

Course: Mobile Application Development

Unit : IV –Sprucing Up Mobile Apps

Class / Semester: II MCA / III Semester

Department of MCA

 Graphics and animation are two key ingredients
for UI enhancement

 Graphics enhances the visual quality of an app

 Animation add zing to the app experience by
augmenting tiny delights at multiple occasions

Deals with
 Screen size
 Screen resolution
 Screen orientation
 Colors
 Typography
 Image formats

Graphics and Animation

22-Dec-23 SPRUCING UP MOBILE APPS / 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 2

Drawables and

Canvas:

Components allows

building custom 2D

graphics using

Canvas

Hardware

acceleration:

GPU to render an

app’s UI for

graphics-intensive

apps,

OpenGL- open

source 3D

framework to

render 3D graphics

Categories of Graphics capabilities

android.graphics

android.graphics.drawable

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 3

Understanding

Two key concepts that predominantly impact the app UI in android is

Screen size

The number of pixels per
unit area of a screen,
usually referred as dots per
inch (dpi)

 To deal with views across multiple
screen densities, it is recommended
to use density-independent pixels
(dp) as the dimension unit.

 It ensures that views get
appropriately scaled up/down
based on the screen densities.

Screen density

 Android provides three
configuration qualifiers –
sw<N>dp, w<N>dp, and
h<N>dp – for supporting
different screen sizes

Color model (A, R,G,B)

opacity

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 4

Drawable Resources

 General abstraction for "something that can be drawn"

 Defined in an XML file in the directory /Resources/drawable

 Not necessary to provide density-specific versions of Drawable Resources

 Android application will load these resources and use the instructions contained in
these XML files to create 2D graphics

 Android supports various types of drawables like png, bitmap image

 Shape drawable is used where geometric shapes are required to be drawn In
XML file is used to define the attributes of the geometric shape , instead of an
image file

 Layer drawable is used when there is a requirement to manage an array of
drawables to be drawn in a layered fashion

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 5

Categories of Graphics capabilities

 android.graphics.Canvas can be used to draw graphics in android

 It provides methods to draw oval, rectangle, picture, text, line etc

 android.graphics.Paint class is used with canvas to draw objects.

 It holds the information of color and style

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 6

MainActivity.java

Example // draw blue circle with anti aliasing turned off

paint.setAntiAlias(false);

paint.setColor(Color.BLUE);

canvas.drawCircle(20, 20, 15, paint);

// draw green circle with anti aliasing turned on

paint.setAntiAlias(true);

paint.setColor(Color.GREEN);

canvas.drawCircle(60, 20, 15, paint);

// draw red rectangle with anti aliasing turned off

paint.setAntiAlias(false);

paint.setColor(Color.RED);

canvas.drawRect(100, 5, 200, 30, paint);

// draw the rotated text

canvas.rotate(-45);

paint.setStyle(Paint.Style.FILL);

canvas.drawText("Graphics Rotation", 40, 180, paint);

//undo the rotate

canvas.restore();

}

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

}

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 7

public class MainActivity extends Activity {

DemoView demoview;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

demoview = new DemoView(this);

setContentView(demoview);

}

private class DemoView extends View{

public DemoView(Context context){

super(context);

}

@Override protected void onDraw(Canvas canvas) {

super.onDraw(canvas);

// custom drawing code here

Paint paint = new Paint();

paint.setStyle(Paint.Style.FILL);

// make the entire canvas white

paint.setColor(Color.WHITE);

canvas.drawPaint(paint);

Drawables- Example

<shape android:shape=“rectangle”>
<gradient android:startColor=“ #4A4A4A” android:endColor=“#AAAAAA” android:angle=“90”/>
<padding android:left=“7dp” android:top=“7dp” android:right=“7dp” android:bottom=“7dp”/>
<corners android:radius=“8dp”/>
</shape>

shape_draw.xml in the res\drawable folder

Apply this drawable as a background of an EditText. The android: background attribute of
<EditText> in Line 3 is used to refer to the shape drawable

<EditText
android:id=“@+id/edit_text01”
android:background=“@drawable/shape_draw”
android:layout_height=“wrap_content”
android:layout_width=“fill_parent”
android:text=“Shape Drawable”
/>

Main_Activity.xml in the res\drawable folder
2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 8

Canvas
 Set of 2D-DRAWING APIs allows to provide own custom graphics onto a canvas or to

modify existing views to customize their look and feel

 There are two ways to draw 2D graphics

1. Draw your animation into a View object from your layout.

2. Draw your animation directly to a Canvas

 Some of the important methods of Canvas Class are as follows

 drawText()

 drawRoundRect()

 drawCircle()

 drawRect()

 drawBitmap()

 drawARGB()

Drawing an animation with a Canvas is
better option when your application
needs to re-draw itself regularly

Drawing an animation with a View is the
best option to draw simple graphics that
do not need to change dynamically

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 9

public class MyView extends View
{

public MyView(Context context)
{

super(context);
// TODO Auto-generated constructor stub

}
@Override
protected void onDraw(Canvas canvas)
{

// TODO Auto-generated method stub
super.onDraw(canvas);
int radius;
radius = 50;
Paint paint = newPaint();
paint.setStyle(Paint.Style.FILL);
paint.setColor(Color.parseColor("#CD5C5C"));
canvas.drawCircle(150,200, radius, paint);
canvas.drawRoundRect(newRectF(20,20,100,100), 20, 20,

paint);
canvas.rotate(-45);
canvas.drawText("TutorialRide", 40, 180, paint);
canvas.restore();

}
}

MyView.java

Public class MainActivity extends Activity
{

@Override
protected void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(new MyView(this));

}
@Override
public boolean onCreateOptionsMenu(Menu menu)
{

// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu);
return true;

}
}

MainActivity.java

Example

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 10

Animation

Animation

 Animation is the process of adding a motion effect to any view, image, or text.

 with the help of an animation, you can add motion or can change the shape of a
specific view

 Animation in Android is generally used to give your UI a rich look and feel

 The animations are basically of three types as follows:

 Property Animation

 View Animation

 Drawable Animation

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 12

Property Animation
 Property animation can be used to add any animation in the Checkbox, Radio Buttons,

and widgets other than any view

 This robust framework which lets you animate any properties of any objects, view or
non-view objects

 It defines the following characteristics of an animation: Duration, time interpolation,
Repeat count and behavior, Animator sets, Frame refresh delay

 android.animation provides classes which handle property animation

 To animate the property, specify

 Property you want to animate

 How long you want to animate

 What values you want animate between

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 13

linear animation

Non-linear animation

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 14

Animators & Evaluators
 Animator is used to create animations

 Done by a subclass of Animator class

 ValueAnimator

 ObjectAnimator

 AnimatorSet

 Evalutor tells property animation system how to calculate values for animated
objects

 IntEvaluator

 FloatEvaluator

 ArgbEvaluator

 TypeAnimator

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 15

View Animation

 Used to add animation to a specific view to perform tweened animation on views

 The android.view.animation provides classes which handle view animation

 It is limited to simple transformation such as moving, re-sizing and rotation, but not
its background color

 Limitations

 Apply on view objects only

 Animate certain aspects of view (scaling and rotation)

 It affects where view is drawn, not where it actually is

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 16

 It is used if you want to animate one image over another

 Loads the series of drawable one after another to create an animation. Ex.
Splash screen on apps logo animation

 It is implemented using the AnimationDrawable class

Drawable Animation

<animation-list xmlns:android=http://schemas.android.com/apk/res/android” android:oneshot="true">
<item android:drawable="@drawable/rocket_thrust1" android:duration="200" />
<item android:drawablec="@drawable/rocket_thrust2" android:duration="200" />
<item android:drawable="@drawable/rocket_thrust3" android:duration="200" />

</animation-list>

rocket_thrust.xml in the res/drawable folder

it can be added as the background image to a View and then called to play

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 17

http://schemas.android.com/apk/res/android

AnimationDrawable rocketAnimation;

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ImageView rocketImage = (ImageView) findViewById(R.id.rocket_image);
rocketImage.setBackgroundResource(R.drawable.rocket_thrust);
rocketAnimation = (AnimationDrawable) rocketImage.getBackground();

rocketImage.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
rocketAnimation.start();

}
});

}

Drawable Animation

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 18

 Anubhav Pradhan, Anil V Deshpande,
“Composing Mobile Apps using Android”, Wiley
Edition, 2014

 http://www.dre.vanderbilt.edu/~schmidt/androi
d/android-4.0/out/target/ common/docs/doc-
comment-check/guide/topics/graphics/2d-
graphics.html

 https://developer.android.com/guide/topics/gra
phics/drawable-animation

REFERENCES

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 19

