
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Re-accredited by NAAC with A+ grade, Accredited by NBA(CSE, IT, ECE, EEE & Mechanical)
Approvedy by AICTE, New Delhi, Recognized by UGC, Affiliated to Anna University, Chennai

GRAPHICS & ANIMATION

Course: Mobile Application Development

Unit : IV –Sprucing Up Mobile Apps

Class / Semester: II MCA / III Semester

Department of MCA

 Graphics and animation are two key ingredients
for UI enhancement

 Graphics enhances the visual quality of an app

 Animation add zing to the app experience by
augmenting tiny delights at multiple occasions

Deals with
 Screen size
 Screen resolution
 Screen orientation
 Colors
 Typography
 Image formats

Graphics and Animation

22-Dec-23 SPRUCING UP MOBILE APPS / 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 2

Drawables and

Canvas:

Components allows

building custom 2D

graphics using

Canvas

Hardware

acceleration:

GPU to render an

app’s UI for

graphics-intensive

apps,

OpenGL- open

source 3D

framework to

render 3D graphics

Categories of Graphics capabilities

android.graphics

android.graphics.drawable

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 3

Understanding

Two key concepts that predominantly impact the app UI in android is

Screen size

The number of pixels per
unit area of a screen,
usually referred as dots per
inch (dpi)

 To deal with views across multiple
screen densities, it is recommended
to use density-independent pixels
(dp) as the dimension unit.

 It ensures that views get
appropriately scaled up/down
based on the screen densities.

Screen density

 Android provides three
configuration qualifiers –
sw<N>dp, w<N>dp, and
h<N>dp – for supporting
different screen sizes

Color model (A, R,G,B)

opacity

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 4

Drawable Resources

 General abstraction for "something that can be drawn"

 Defined in an XML file in the directory /Resources/drawable

 Not necessary to provide density-specific versions of Drawable Resources

 Android application will load these resources and use the instructions contained in
these XML files to create 2D graphics

 Android supports various types of drawables like png, bitmap image

 Shape drawable is used where geometric shapes are required to be drawn In
XML file is used to define the attributes of the geometric shape , instead of an
image file

 Layer drawable is used when there is a requirement to manage an array of
drawables to be drawn in a layered fashion

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 5

Categories of Graphics capabilities

 android.graphics.Canvas can be used to draw graphics in android

 It provides methods to draw oval, rectangle, picture, text, line etc

 android.graphics.Paint class is used with canvas to draw objects.

 It holds the information of color and style

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 6

MainActivity.java

Example // draw blue circle with anti aliasing turned off

paint.setAntiAlias(false);

paint.setColor(Color.BLUE);

canvas.drawCircle(20, 20, 15, paint);

// draw green circle with anti aliasing turned on

paint.setAntiAlias(true);

paint.setColor(Color.GREEN);

canvas.drawCircle(60, 20, 15, paint);

// draw red rectangle with anti aliasing turned off

paint.setAntiAlias(false);

paint.setColor(Color.RED);

canvas.drawRect(100, 5, 200, 30, paint);

// draw the rotated text

canvas.rotate(-45);

paint.setStyle(Paint.Style.FILL);

canvas.drawText("Graphics Rotation", 40, 180, paint);

//undo the rotate

canvas.restore();

}

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

}

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 7

public class MainActivity extends Activity {

DemoView demoview;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

demoview = new DemoView(this);

setContentView(demoview);

}

private class DemoView extends View{

public DemoView(Context context){

super(context);

}

@Override protected void onDraw(Canvas canvas) {

super.onDraw(canvas);

// custom drawing code here

Paint paint = new Paint();

paint.setStyle(Paint.Style.FILL);

// make the entire canvas white

paint.setColor(Color.WHITE);

canvas.drawPaint(paint);

Drawables- Example

<shape android:shape=“rectangle”>
<gradient android:startColor=“ #4A4A4A” android:endColor=“#AAAAAA” android:angle=“90”/>
<padding android:left=“7dp” android:top=“7dp” android:right=“7dp” android:bottom=“7dp”/>
<corners android:radius=“8dp”/>
</shape>

shape_draw.xml in the res\drawable folder

Apply this drawable as a background of an EditText. The android: background attribute of
<EditText> in Line 3 is used to refer to the shape drawable

<EditText
android:id=“@+id/edit_text01”
android:background=“@drawable/shape_draw”
android:layout_height=“wrap_content”
android:layout_width=“fill_parent”
android:text=“Shape Drawable”
/>

Main_Activity.xml in the res\drawable folder
2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 8

Canvas
 Set of 2D-DRAWING APIs allows to provide own custom graphics onto a canvas or to

modify existing views to customize their look and feel

 There are two ways to draw 2D graphics

1. Draw your animation into a View object from your layout.

2. Draw your animation directly to a Canvas

 Some of the important methods of Canvas Class are as follows

 drawText()

 drawRoundRect()

 drawCircle()

 drawRect()

 drawBitmap()

 drawARGB()

Drawing an animation with a Canvas is
better option when your application
needs to re-draw itself regularly

Drawing an animation with a View is the
best option to draw simple graphics that
do not need to change dynamically

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 9

public class MyView extends View
{

public MyView(Context context)
{

super(context);
// TODO Auto-generated constructor stub

}
@Override
protected void onDraw(Canvas canvas)
{

// TODO Auto-generated method stub
super.onDraw(canvas);
int radius;
radius = 50;
Paint paint = newPaint();
paint.setStyle(Paint.Style.FILL);
paint.setColor(Color.parseColor("#CD5C5C"));
canvas.drawCircle(150,200, radius, paint);
canvas.drawRoundRect(newRectF(20,20,100,100), 20, 20,

paint);
canvas.rotate(-45);
canvas.drawText("TutorialRide", 40, 180, paint);
canvas.restore();

}
}

MyView.java

Public class MainActivity extends Activity
{

@Override
protected void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(new MyView(this));

}
@Override
public boolean onCreateOptionsMenu(Menu menu)
{

// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu);
return true;

}
}

MainActivity.java

Example

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 10

Animation

Animation

 Animation is the process of adding a motion effect to any view, image, or text.

 with the help of an animation, you can add motion or can change the shape of a
specific view

 Animation in Android is generally used to give your UI a rich look and feel

 The animations are basically of three types as follows:

 Property Animation

 View Animation

 Drawable Animation

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 12

Property Animation
 Property animation can be used to add any animation in the Checkbox, Radio Buttons,

and widgets other than any view

 This robust framework which lets you animate any properties of any objects, view or
non-view objects

 It defines the following characteristics of an animation: Duration, time interpolation,
Repeat count and behavior, Animator sets, Frame refresh delay

 android.animation provides classes which handle property animation

 To animate the property, specify

 Property you want to animate

 How long you want to animate

 What values you want animate between

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 13

linear animation

Non-linear animation

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 14

Animators & Evaluators
 Animator is used to create animations

 Done by a subclass of Animator class

 ValueAnimator

 ObjectAnimator

 AnimatorSet

 Evalutor tells property animation system how to calculate values for animated
objects

 IntEvaluator

 FloatEvaluator

 ArgbEvaluator

 TypeAnimator

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 15

View Animation

 Used to add animation to a specific view to perform tweened animation on views

 The android.view.animation provides classes which handle view animation

 It is limited to simple transformation such as moving, re-sizing and rotation, but not
its background color

 Limitations

 Apply on view objects only

 Animate certain aspects of view (scaling and rotation)

 It affects where view is drawn, not where it actually is

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 16

 It is used if you want to animate one image over another

 Loads the series of drawable one after another to create an animation. Ex.
Splash screen on apps logo animation

 It is implemented using the AnimationDrawable class

Drawable Animation

<animation-list xmlns:android=http://schemas.android.com/apk/res/android” android:oneshot="true">
<item android:drawable="@drawable/rocket_thrust1" android:duration="200" />
<item android:drawablec="@drawable/rocket_thrust2" android:duration="200" />
<item android:drawable="@drawable/rocket_thrust3" android:duration="200" />

</animation-list>

rocket_thrust.xml in the res/drawable folder

it can be added as the background image to a View and then called to play

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 17

http://schemas.android.com/apk/res/android

AnimationDrawable rocketAnimation;

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ImageView rocketImage = (ImageView) findViewById(R.id.rocket_image);
rocketImage.setBackgroundResource(R.drawable.rocket_thrust);
rocketAnimation = (AnimationDrawable) rocketImage.getBackground();

rocketImage.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
rocketAnimation.start();

}
});

}

Drawable Animation

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 18

 Anubhav Pradhan, Anil V Deshpande,
“Composing Mobile Apps using Android”, Wiley
Edition, 2014

 http://www.dre.vanderbilt.edu/~schmidt/androi
d/android-4.0/out/target/ common/docs/doc-
comment-check/guide/topics/graphics/2d-
graphics.html

 https://developer.android.com/guide/topics/gra
phics/drawable-animation

REFERENCES

2-Dec-23 Building Blocks of Mobile Apps-II/ 19CA701-Mobile Application Development/Haripriya R/MCA/SNSCT 19

