APPLICATIONS: STRETCHING OF AN ELASTIC MEMBRANE

ELASTIC DEFORMATION

Elastic deformation is when objects that can change due to stretching, twisting, compression and bending, but once released, they return to their original shape. But, inelastic deformation is when an object can be stretched but cannot return back to its original shape.

ELASTIC DEFORMATION

An elastic membrane in the $x_{1} x_{2}$ plane with boundary circle $x_{1}{ }^{2}+x_{2}{ }^{2}=1$ is stretched so that a point P : $\left(x_{1}, x_{2}\right)$ goes over into the point $\mathrm{Q}:\left(y_{1}, y_{2}\right)$ given by
$\mathrm{Y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\mathrm{AX}=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ in components
$y_{1}=5 x_{1}+3 x_{2}$
$y_{2}=3 x_{1}+5 x_{2}$

Find the principal directions, that is, the directions of the position vector x of P for which the direction of the position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this deformation?

ELASTIC DEFORMATION

We know that $\mathrm{Y}=\mathrm{AX}$
NOW Y $=\lambda \mathrm{X}$
Comparing $\mathrm{AX}=\lambda \mathrm{X}$

$$
(\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0
$$

The characteristics equation is given by $\lambda^{2}-S_{1} \lambda+S_{2}=0$
Here, $S_{1}=10, S_{2}=16$
\therefore The characteristic equation is $\lambda^{2}-10 \lambda+16=0$

$$
\therefore \lambda=2,8
$$

To find Eigen Vectors:

$$
\begin{aligned}
& (\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0 \\
& {\left[\begin{array}{cc}
5-\lambda & 3 \\
3 & 5-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0}
\end{aligned}
$$

ELASTIC DEFORMATION

When $\lambda=2$,

$$
\begin{align*}
& {\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0} \\
& 3 \mathrm{x}_{1}+3 \mathrm{x}_{2}=0 \tag{1}\\
& 3 \mathrm{x}_{1}+3 \mathrm{x}_{2}=0 \tag{2}
\end{align*}
$$

Since both are same equations,
The equation is reduced to a single equation

$$
\begin{aligned}
& 3 \mathrm{x}_{1}+3 \mathrm{x}_{2}=0 \\
& X_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

ELASTIC DEFORMATION

When $\lambda=8$,

$$
\begin{align*}
& {\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0} \\
& -3 \mathrm{x}_{1}+3 \mathrm{x}_{2}=0 \tag{1}\\
& 3 \mathrm{x}_{1}-3 \mathrm{x}_{2}=0
\end{align*}
$$

Since both are same equations,
The equation is reduced to a single equation

$$
\begin{gathered}
-3 \mathrm{x}_{1}+3 \mathrm{x}_{2}=0 \\
X_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

ELASTIC DEFORMATION

To find the principal direction:
If $\lambda=8$,
Then i) $\cos ^{-1}\left[\frac{1}{\sqrt{1^{2}+1^{2}}}\right]=\cos ^{-1}\left[\frac{1}{\sqrt{2}}\right]=45^{0}$

$$
\text { ii) } \cos ^{-1}\left[\frac{1}{\sqrt{1^{2}+1^{2}}}\right]=\cos ^{-1}\left[\frac{1}{\sqrt{2}}\right]=45^{0}
$$

If $\lambda=2$,
i) $\cos ^{-1}\left[\frac{1}{\sqrt{1^{2}+(-1)^{2}}}\right]=\cos ^{-1}\left[\frac{1}{\sqrt{2}}\right]=45^{0}$
ii) $\cos ^{-1}\left[\frac{-1}{\sqrt{1^{2}+(-1)^{2}}}\right]=\cos ^{-1}\left[\frac{-1}{\sqrt{2}}\right]=135^{0}$

ELASTIC DEFORMATION

We thus obtain as eigenvectors of A, for instance, $\left[\begin{array}{ll}1 & -1\end{array}\right]^{T}$ corresponding to λ_{1} and $\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ corresponding to λ_{2} (or a nonzero scalar multiple of the se). These vectors make 45° and 135^{0} angles with the positive x_{1}-direction. They give the principal directions, the answer to our problem. The eigenvalues show that in the principal directions the membrane is stretched by factors 8 and 2 , respectively.
if we set, $x=r \cos \theta, y=r \sin \theta$ then a boundary point of the unstretched circular membrane has coordinates $\cos \theta, \sin \theta$. Hence, after the stretch we have

$$
x=8 \cos \theta, y=2 \sin \theta
$$

ELASTIC DEFORMATION

Since $\sin ^{2} \theta+\cos ^{2} \theta=1$,

$$
\frac{x^{2}}{8^{2}}+\frac{y^{2}}{2^{2}}=1
$$

This shows that the deformed boundary is a ellipse.

