UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX
 Quadratic form

DEFINITION OF QUADRATIC FORM:

A homogeneous polynomial of degree 2 with any number of variables are known as quadratic form
$\left[\right.$ co eff of $x^{2} \frac{1}{2}$ co eff of $x y \frac{1}{2} \operatorname{co}$ eff of $x z \frac{1}{2} \operatorname{co}$ eff of $y x$ co eff of $x^{2} \frac{1}{2}$ co eff of $y z \frac{1}{2}$ co eff of $z x$

WORKING RULE:

STEP 1: Write the matrix o the quadratic form .then find $\mathrm{D}=N^{T} A N$
By orthogonal transformation.

STEP 2: Find $Q=Y^{T} D Y$

INDEX OF QUADRATIC FORM

The no of positive square terms in the canonical form is called the index of the quadratic form.It is denoted by p

SIGNATURE OF OUADRATIC FORM

The different of positive and negative square terms are called signature of quadratic terms .denoted by s

$$
\mathrm{s}=2 \mathrm{p}-\mathrm{r}
$$

NATURE OF OUDARTIC FORM :

Positive definite Ex: 1,2,2

Negative definite Ex: -1,-2-,2

Semi Positive Ex: 0,1,2

Semi negative Ex: 0,-1,-2

Indefinite Ex: $-1,1,2$

$$
-2,-1,1
$$

Problems:

1.Find the nature of the given equation $2 x^{2}+2 x y+3 y^{2}=0$

STEP 1:The matrix form

$$
A=\left(\begin{array}{llll}
2 & 1 & 1 & 3
\end{array}\right)
$$

$c_{1}=$ Sum Of Diagonal Elements

$$
=2+3=5
$$

$c_{2}=|A|=|21113|=5$

The characteristic equation is
$\lambda^{2}-5 \lambda+5=0$
Here c_{1} and c_{2} are positive

Hence the nature of the given matrix is positive definite

