Euler`s Equation:

This is equation of motion in which the forces due to gravity and pressure are taken into consideration. This is derived by considering the motion of a fluid element along a stream-line. Consider a stream-line in which flow is taking place in Sdirection as shown in figure. Consider a cylindrical element of cross-section dA and length dS. The forces acting on the cylindrical element are:

1. Pressure force $p d A$ in the direction of flow.
2. Pressure force $\left(p+\frac{\partial p}{\partial s} d s\right) d A$ opposite to the direction of flow.
3. Weight of element $\rho g d A d s$.

Let θ is the angle between the direction of flow and the line of action of the weight of element.
The resultant force on the fluid element in the direction of s must be equal to the mass of fluid element \times acceleration in the direction s.

$$
\begin{align*}
\therefore & p d A-\left(p+\frac{\partial p}{\partial s} d s\right) d A-\rho g d A d s \cos \theta \\
= & \rho d A d s \times a_{s} \tag{6.2}
\end{align*}
$$

where a_{s} is the acceleration in the direction of s.
Now

$$
\begin{aligned}
a_{s} & =\frac{d v}{d t}, \text { where } v \text { is a function of } s \text { and } t \\
& =\frac{\partial v}{\partial s} \frac{d s}{d t}+\frac{\partial v}{\partial t}=\frac{v \partial v}{\partial s}+\frac{\partial v}{\partial t}\left\{\because \frac{d s}{d t}=v\right\}
\end{aligned}
$$

If the flow is steady, $\frac{\partial v}{\partial t}=0$

$$
\therefore \quad a_{s}=\frac{v \partial v}{\partial s}
$$

Substituting the value of a_{s} in equation ing the equation, we get
and simplify-

$$
-\frac{\partial p}{\partial s} d s d A-\rho g d A d s \cos \theta=\rho d A d s \times \frac{\partial v}{\partial s}
$$

Dividing by $\rho d s d A,-\frac{\partial p}{\rho \partial s}-g \cos \theta=\frac{v \partial v}{\partial s}$
or

$$
\frac{\partial p}{\rho \partial s}+g \cos \theta+v \frac{\partial v}{\partial s}=0
$$

But from Fig. 6.1 (b), we have $\cos \theta=\frac{d z}{d s}$

$$
\therefore \quad \frac{1}{\rho} \frac{d p}{d s}+g \frac{d z}{d s}+\frac{v d v}{d s}=0 \quad \text { or } \quad \frac{d p}{\rho}+g d z+v d v=0
$$

or

$$
\frac{d p}{\rho}+g d z+v d v=0
$$

is known as Euler's equation of motion.

