COIMBATORE-35

DEPARTMENT OF AEROSPACE ENGINEERING

19GET275 - VQAR 1
 UNIT -1 QUANTITATIVE ABILITY I

1. Concept of Percentage:

By a certain percent, we mean that many hundredths.
Thus, x percent means x hundredths, written as $x \%$.
To express $x \%$ as a fraction: We have, $x \%=\begin{gathered}x \\ 100\end{gathered}$.

$$
\text { Thus, } 20 \%=\begin{gathered}
20 \\
100
\end{gathered}=\frac{1}{5}
$$

To express b as a percent: We have, $b=\binom{a}{b \times 100}_{\%}$. Thus, $4=\binom{1}{4 \times 100}_{\%}=25 \%$.
2. Percentage Increase/Decrease:

If the price of a commodity increases by R\%, then the reduction in consumption so as not to increase the expenditure is:

$$
\left[\begin{array}{c}
\mathrm{R} \\
(100+\mathrm{R}) \times 100
\end{array}\right]_{\%}
$$

If the price of a commodity decreases by $\mathrm{R} \%$, then the increase in consumption so as not to decrease the expenditure is:
$\left[\begin{array}{c}\mathrm{R} \\ (100-\mathrm{R}) \times 100\end{array}\right]_{\%}$
3. Results on Population:

Let the population of a town be P now and suppose it increases at the rate of $\mathrm{R} \%$ per annum, then:

1. Population after n years $=P\binom{\mathrm{R}}{1+100}^{\mathrm{n}}$

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

COIMBATORE-35
DEPARTMENT OF AEROSPACE ENGINEERING

19GET275 - VQAR 1

UNIT -1 QUANTITATIVE ABILITY I

P
2. Population n years ago $=\binom{\mathrm{R}}{1+100}^{\mathrm{n}}$
4. Results on Depreciation:

Let the present value of a machine be P. Suppose it depreciates at the rate of R\% per annum. Then:

1. Value of the machine after n years $=P\binom{\mathrm{R}}{1-100}^{\mathrm{P}}$
2. Value of the machine n years ago $=\binom{\mathrm{R}}{1-100}^{\mathrm{n}}$
3. If A is $R \%$ more than B, then B is less than A by $\left[\begin{array}{c}R \\ (100+R) \times 100\end{array}\right] \%$.
4. If A is $R \%$ less than B, then B is more than A by $\left[\begin{array}{lll}R & & \\ & & \\ & & 100\end{array}\right]_{\%}$

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)
COIMBATORE-35

DEPARTMENT OF AEROSPACE ENGINEERING

19GET275 - VQAR 1

UNIT -1 QUANTITATIVE ABILITY I

1.A batsman scored 110 runs which included 3 boundaries and 8 sixes. What percent of his total score did he make by running between the wickets?
45\%
45 ${ }_{11}^{5} \%$
$54{ }_{11}^{6} \%$
55\%
Answer: Option
Explanation:
Number of runs made by running $=110-(3 \times 4+8 \times 6)$
= 110 - (60)
$=50$.
\therefore Required percentage $=\left(\begin{array}{ll}50 & \\ & \times 100\end{array}\right)_{\%=45}^{5} \%$
2.Two students appeared at an examination. One of them secured 9 marks more than the other and his marks was 56% of the sum of their marks. The marks obtained by them are:

- 39, 30
- 41, 32
- 42, 33
- 43, 34
- Answer: Option
- Explanation:
- Let their marks be $(x+9)$ and x.

Then, $x+9=\frac{56}{100}(x+9+x)$

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

COIMBATORE-35
DEPARTMENT OF AEROSPACE ENGINEERING

19GET275 - VQAR 1

UNIT -1 QUANTITATIVE ABILITY I

- $\Rightarrow 25(x+9)=14(2 x+9)$
- $\Rightarrow 3 x=99$
- $\Rightarrow x=33$
- So, their marks are 42 and 33 .
3.A fruit seller had some apples. He sells 40% apples and still has 420 apples.

Originally, he had:

- 588 apples
- 600 apples
- 672 apples
- 700 apples
- Answer: Option
- Explanation:
- Suppose originally he had x apples.
- Then, (100-40)\% of $x=420$.
$\Rightarrow{ }_{100}^{60} \mathrm{x} x=420$
$\Rightarrow x=\binom{420 \times 100}{60}=700$.
4.What percentage of numbers from 1 to 70 have 1 or 9 in the unit's digit?
- 1
- 14
- 20

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)
COIMBATORE-35
DEPARTMENT OF AEROSPACE ENGINEERING

19GET275 - VQAR 1

UNIT -1 QUANTITATIVE ABILITY I

- 21
- Answer: Option
- Explanation:
- Clearly, the numbers which have 1 or 9 in the unit's digit, have squares that end in the digit 1 . Such numbers from 1 to 70 are $1,9,11,19,21,29,31,39$, 41, 49, 51, 59, 61, 69.
- Number of such number $=14$
\therefore Required percentage $=\binom{14}{70 \times 100}_{\%=20 \%}$.
5.lf $\mathrm{A}=x \%$ of y and $\mathrm{B}=y \%$ of x, then which of the following is true?
- A is smaller than B.
- A is greater than B
- Relationship between A and B cannot be determined.
- If x is smaller than y, then A is greater than B.
- None of these
- Answer: Option
- Explanation:
$x \%$ of $y=\left(\begin{array}{cc}x \\ 100 & \mathrm{x} y\end{array}\right)=\left(\begin{array}{cc}y \\ 100 & \mathrm{x} x\end{array}\right)=y \%$ of x
- $\therefore \mathrm{A}=\mathrm{B}$.

SNS COLLEGE OF TECHNOLOGY （An Autonomous Institution）

COIMBATORE－35

DEPARTMENT OF AEROSPACE ENGINEERING

19GET275－VQAR 1
UNIT－1 QUANTITATIVE ABILITY I

What is Percentage？

Percentage is the representation of value expressed as a fraction of 100 ．
Ex： $25 \% 25 \%$ means 2510025100 ，similarily $50 \% 50 \%$ means 5010050100，Here 25 and 50 are the parts of whole number 100 ．
we can use the formula to find out the percentage of any value is given
人
Some examples are given below to understand percentage in a better way－
Example（1）：Mr．John scored 3030 runs out of total score of the team 150150 runs．Find the percentage score of Mr．John？
Solution：Mr．John scored 3030 runs out of 150150 runs means 3015030150 ，
 0 \％
Example（2）：Mr．John scored 20 \％20 \％runs out of total score of the team 150150 runs． Find the runs scored by of Mr．John？
Solution：Mr．John scored 20 \％20 \％runs means 2010020100，then runs scored by Mr．John out of total 150150 runs $=20100 \times 150=30$ runs $=20100 \times 150=30\rangle$ 人 $仓\rangle$

Conversion of fraction value into percent value：

Multiply the fraction value by 100100 for converting a fraction value into percent value， Some examples are given below to understand the conversion－
Example（1）：Conversion of fraction value 1414 into percent，$=14=14 \times 100=25 \%=14=14 \times 100=25 \%$
Example（2）：Conversion of fraction value 2525 into
percent，$=25=25 \times 100=40 \%=25=25 \times 100=40 \%$
Conversion of percent value into fraction value：
Divide the percent value by 100100 for converting a percent value into fraction value，Some examples are given below to understand the conversion－
Example（1）：Conversion of percent value $20 \% 20 \%$ into fraction value，$=20 \%=20100=15=20 \%=20100=15$
Example（2）：Conversion of percent value $10 \% 10 \%$ into fraction value，$=10 \%=10100=110$

