UNIT 2

Moment and Couple

Moment of a force

Voment of a force.

Moment of a force about a point is defined as the product of the force and the perpendicular distance of the line of action of the force from that point.

F is a cuwnward force applied at ' A ' and ' r ' is the perpendicular distance of the line of action of the force F, from the point ' O '.

The Moment (M) of the force F about ' O ' is given by,

$$
M_{o}=F \times r \quad \text { (i.e. Force } \times \text { perpendicular distance) }
$$

Downward force applied at A, will have a tendency to rotate $O A$ about the point ' O '. Hence, moment may also be defined as the turning effect produced by a force. Moment is classified into two types:
(i) Clock wise moment ()) and (ii) Anticlock wise ()) moment
downward force F_{1} acting on the right hand side of the fulcrum ' O ', at a distance ot ' a ', produces clock wise moment about ' O '.
\therefore Moment of F_{1} about ' O ' $=F_{1} \times a($ Clock wise $)$)
But, downward force F_{2}, applied on the left hand side of the fulcrum ' O ', at a distan of b, produces anticlockwise moment about ' O '.
\therefore Moment of F_{2} about ' O ' $=F_{2} \times b$ (Anticlock wise ()
Sign convention.
In the procecding articles, we use positive sign for clockwise moment and negative sif for anticlockwise moment.

Unit of Moment.

In S.I. system, unit of moment is Newton-metre (Nm). i.c., Force is measured in Newte and the distance is measured in metre.

Moment of vertical and horizontal forces

Moment of Vertical forces.

About a point (at ' O '), right hand side downward force and left hand side upward force produces clockwise moment, shown in Similarly, about a point (at ' O '), right hand side upward force and left hand side downward force produces anticlockwise moment,

Moment of Horizontal forces

Varignons theorm

Varignon's theorem

The algebraic sum of the moments of any number of forces about any point in their plane is equal to the moment of their resultant about the same point. Varignon's theorem is also known as theorem of moments.

Consider a rigid body subjected to three coplanar forces F_{1}, F_{2} and F_{3}
at perpendicular distances d_{1}, d_{2} and d_{3} from a point O. Let the resultant force R is at a distance
 ' d ' from ' O '.
From Varignon's theorem,
Sum of the moments of the forces F_{1}, F_{2} and F_{3} about ' O ' is equal to the moment of resultant force R, about the same point ' O '.

$$
\text { i.e., } F_{1} d_{1}+F_{2} d_{2}+F_{3} d_{3}=R . d .
$$

Sum of the moment of all the forces about a point $=$ Moment of their resultant forc about the came point. Varignon's theorem is used in locating the resultant force.

Find the resultant force for the parallel force system.

Solution.
Force system shown above is like parallel force system (as they act in same direction) Hence, resultant force will be in between the given forces. (whereas in unlike parallel force system, resultant force will be either in between the given forces or outside).

Using the sign conveition, described in article.
Magnitude of Resultant force, $R=24+36=60 \mathrm{~N}$

Direction of Resultant force:- Upwards. (As ' R ' is positive)
(In like parallel force system, direction of Resultant force will be same as the direction of the given forces).
Location of Resultant force
To find the Location of Resultant force, i.e., point of application of Resultant force, Varignon's theorem is applied.

Let us locate the Resultant force with reference to the point A. Hence, we will find the sum of the moments of two forces $24 N$ and $36 N$ about the point A.

Algebraic sum of the moments about A,

$$
\begin{aligned}
\Sigma M_{A} & =(24 \times 0)-(36 \times 12) \quad(- \text { sign for anticlock wise moment }) \\
& =-432 \mathrm{Ncm} .
\end{aligned}
$$

ΣM_{A} is negative measure, that is an anticlockwise moment. Hence the Resultant foree should also produce the anticlockwise moment about A. To have anticlockwise moment by resultant force and also to act upwards, resultant force should be taken on the right side of A. (If it is taken upward, on the left hand side of A, then it will produce clockwise moment).

Equating the moment of Resultant force and the algebraic sum of the moments of the given forces,

Moment of Resultant force about $A=\Sigma M_{A}$

$$
\text { i.e., } \quad R \times x=432 \mathrm{Ncm}
$$

where x is the distance of Resultant force from the point A.

$$
\text { or } \begin{aligned}
60 \times x & =432 \\
\therefore \quad x & =\frac{432}{60}=7.2 \mathrm{~cm}
\end{aligned}
$$

\therefore The Resultant force for the given like parallel forces is 60 N , acting upwards, on t right hand side of A, at a distance of 7.2 cm .

For the parallel forces in diagram,determine the magnitude ,direction and location of the resultant force.

Solution

Force system given in the problem is unlike parallel force system.
Magnitude of Resultant force, $R=30-40-15+25-60$

$$
=-60 \mathrm{~N}
$$

(Force acting towards right is positive and the force acting towards left is negative)
$(-)$ sign of Resultant force shows that, it is acting in the negative direction (i.e., towards left)

Let us find the location of Resultant force with reference to the point A.

$$
\begin{aligned}
\Sigma M_{A} & =(30 \times 8)-(40 \times 7)-(15 \times 4)+(25 \times 2)+(60 \times 0) \\
& =240-280-60+50=-50 \mathrm{Nm}
\end{aligned}
$$

$(-)$ sign shows that, the net moment is an anticlockwise one. Hence Resultant force should also produce anticlockwise moment about A. Satisfying ' R ' is left hand side force and producing anticlockwise moment about A, it should be taken above the point A.

Let ' x^{*} ' is the perpendicular distance of Resultant force from the point A.

$$
\begin{aligned}
\therefore R \times x & =50 \\
\text { i.e., } 60 \times x & =50 \\
\therefore x & =\frac{50}{60}=0.833 \mathrm{~m}
\end{aligned}
$$

Resultant force is shown in dotted line

Four forces of magnitude and direction acting on a square ABCD of side $2 m$ are in diagram, calculate the resultant in magnitude and direction and also locate its point of application with respect to the sides AB and AD.

Four forces of magnitude and direction acting on a square $A B C D$ of side $2 m$ are shown in fig Calculate the resultant in magnitude and direction and also locate its point of application with respect to the sides $A B$ and $A D$.

(a)

(b)

Solution:

The given inclined forces are resolved into horizontal and vertical components

Now, Algebraic sum of Horizontal forces,
$(\rightarrow+) \Sigma H=12 \cos 45+10 \cos 30-6 \cos 60-4 \cos 30$

$$
=8.485+8.66-3-3.464=10.681 \mathrm{KN}
$$

Algebraic sum of vertical forces,

$$
\begin{aligned}
(\uparrow+) \Sigma V & =12 \sin 45-10 \sin 30+6 \sin 60-4 \sin 30 \\
& =8.485-5+5.196-2=6.681 K N
\end{aligned}
$$

Magnitude of Resultant force, $R=\sqrt{\Sigma H^{2}+\Sigma V^{2}}=\sqrt{(10.681)^{2}+(6.681)^{2}}$

$$
=\sqrt{158.71}
$$

Direction of Resultant force, $\alpha=\tan ^{-1}\left(\frac{\Sigma V}{\Sigma H}\right)=\tan ^{-1}\left(\frac{6.681}{10.681}\right)$

Location of Resultant force.

In the problem, Location of resultant force with respect to the sides $A B$ and $A D$ is required Hence, find the algebraic sum of moments of all the given forces about the point A.
$\therefore \Sigma M 1_{A}=\left(4 \cos 30^{\circ} \times 2\right)+\left(10 \sin 30^{\circ} \times 2\right)-\left(10 \cos 30^{\circ} \times 2\right)-\left(12 \sin 45^{\circ} \times 2\right)$

$$
\begin{aligned}
& =6.928+10-17.32-16.97 \\
& =-17.36 \mathrm{KNm} \text { (anticlock wise) }
\end{aligned}
$$

(moment of all other forces about A are zero).
Hence, to have anticlockwise moment by the resultant force, R is to be taken on the right hand side of A as shown . ${ }^{-}$. which will cut the sides $A B$ and $A D$.
. vow, we will find the point of application of Resultant force with respect to the sides $A B$ and $A D$ at M and N. Let the Resultant force cuts at distances x and y from A on $A B$ and $A D$ respectively.
Location of Resultant force w.r.t. AB. (ie, finding x value) Resolve the resultant force ito two components ΣH and ΣV at M as shown in.

Now, $\Sigma M_{A}=$ sum of the moments of $\Sigma H \& \Sigma V$

$$
\text { or } \quad \Sigma M_{A}=\Sigma V \times x
$$

(as ΣH moment about A is zero)

$$
\therefore 17.36=6.681 \times x
$$

$$
\begin{aligned}
\therefore x & =\frac{17.36}{6.681} \\
& =2.598 \mathrm{~m}
\end{aligned}
$$

But the side $A B$ is 2 m only. So, the Resultant force cuts the side $A B$ extended at a distance of 2598 m from A.
Location of Resultant force w.r.t. $A D$. (ie, finding y value)
Resolve the resultant force into two components ΣH and Σ at N as shown in
$\therefore \mathrm{I} . \Sigma M_{i 1}=$ sum of the moments of ΣH and ΣV.
$\therefore \quad \Sigma M_{A}=\Sigma H \times y$
(as moment of ΣV about A is zero)
or $\quad 17.36=10.681 \times y$

$\therefore y=\frac{17.36}{10.681}=1.625 \mathrm{~m}$
Resultant force cuts the side $A D$ at N, at a distance of 1.625 m from A.

The Resultant force is shown below

Four forces act on a 700 mm plate as I diagram (a) Find the resultant of these forces (b) Locate the two points where the line of action of the resultant intersects the edge of the plate`

Solution :
Let $\quad F_{1}=340 N ; \quad F_{2}=760 N ; \quad F_{3}=600 N ; \quad F_{4}=500 N$
F_{2} is a horizontal force; hence $\theta=0$.
F_{3} is a vertical force; hence $\Theta=90^{\circ}$
but, angle of inclination of the forces F_{1} and F_{4} are not directly given. Let the angle of inclinations of $F_{1}(34 O N)$ and $F_{4}(5 O O N)$ forces with horizontal be Θ_{1} and Θ_{4} respectively.

To find Θ_{1}.
In a right angled triangle EDB.
$\angle A E C=\theta_{1}=\tan ^{-1}\left(\frac{375}{200}\right)=61.92^{\circ}$
To find $\theta_{4}=$ In a right angled triangle $E C A$,

$$
\angle \mathrm{BED}=\theta_{4}=\tan ^{-1}\left(\frac{375}{500}\right)=36.86^{\circ}
$$

Resolved components of forces are shown in fig. 5.22.
Resultant Force :
Algebraic sum of horizontal forces,
$(\rightarrow+) \Sigma H I=340 \cos 61.92+760-500 \cos 36.86$

$$
=160+760-400=520 N
$$

Algebraic sum of vertical forces,
$(\uparrow+) \Sigma V=340 \sin 61.92+600+500 \sin 36.86$

$$
=300+600+300=1200 N
$$

\therefore Magnitude of Resultant force. $R=\sqrt{(\Sigma H)^{2}+(\Sigma V)^{2}}$

$$
=\sqrt{(520)^{2}+(1200)^{2}}=130782 \mathrm{~N}
$$

Direction of Resultamt force,

$$
\alpha=\tan ^{-1}\left(\frac{\sum Y}{\Sigma H}\right)=\tan ^{-1}\left(\frac{1200}{520}\right)=6657^{\circ}
$$

Location of Resaltant force

We will locate the resultant force with reference to the point C.

Algebraic sum of moments of all forces about C,
$\sum M_{C}-(340 \cos 61.92 \times 0.375)-(340 \sin 61.92 \times 0.7)-(500 \cos 36.86 \times 0.375)$ $=60-210-150=-300 \mathrm{Nm}$
Negative sign shows that, sum of moments of all forces at C is anticlockwise. Hence resultant force should also produce an anticlockwise moment at C. Knowing the dircetion o resultant force to have anticlockwise moment, It should be taken below the point C

Let the perpendicular distance of resultant force from point C be ' x ' m. Ve know,
sum of moments at $C=$ mornent of Resultant at C

$$
\text { i.e., } \quad \begin{aligned}
\sum N A_{C} & =R \times x \\
\therefore x & =\frac{\sum N A_{C}}{R}=\frac{300}{1307.82}=0.23 m
\end{aligned}
$$

Resultant force is shown in fig. 5.23 .
$\mathrm{R}=1307.82 \mathrm{~N}$

(b) Interception of Resultant force with the edges

Let the line of action
 respectively as shown in

Let $A M=a$ and
To find ' b ' (i.e., $C N$ Distance)
In right angled triangle $C O N$,

$$
\begin{aligned}
\text { LCON } & =90^{\circ} ; \\
\therefore \sin 66.57 & =\frac{C O}{C N}=\frac{0.23}{b} \\
\therefore \quad b & =\frac{0.23}{\sin 66.57}=0.25 m \text { or } 250 \mathrm{~mm}
\end{aligned}
$$

To find ' a ' (i.e., AM Distance).

Resolve the Resultant force into two components ΣH and ΣV as shown i V know, sum of the moments at $C, \sum \mathcal{A}_{C}=-300 \mathrm{Nm}$. (anticlockwise). Therefore, moment resultant force about C should also be 300 Nm . i.e., sum of the moments of its componen ($\Sigma I F$ and ΣV) about C is also equal to 300 Nm .
ie. $-300=\left(\sum H \times A C\right)-(\Sigma V \times a) \quad$ (- sign due to anticlockwise)
or $-300=(520 \times 0.375)-(1200 \times a)$
Solving, we get,

$$
a=0.412 \mathrm{~m} \quad \text { or } \quad 412 \mathrm{~mm}
$$

couple

"Two forces F and $-F$ having the same magnitude, parallel lines of action and opposite sense are said to form a couple**
When two equal and opposite parallel forces act on a body, at some distance apart, the two forces form a couple. Couple has a tendency to rotate the body. The perpendicular distance between the parallel forces is called arm of the couple.
shows two parallel forces of magnitude F, but acts in opposite direction at a distance ' a '. These two forces will form a couple. This couple will have a tendency to rotate the body in
 clockwise direction.

In a couple sum of the moments of two forces about any pei(either in between the forecs or outside) is same.

To prove this, let us locate a point O in a couple, at a distance of x from A. There are two unlike parallel forces' acting at A and B. with the arm of couple ' a '.

Hence, $O A=x$ and $O B=(a-x)$.

Sum of the moments at \boldsymbol{A} :
Let us find the sum of the moments of two parallel forces about the point A

$$
\begin{aligned}
\Sigma M_{A} & =(F \times a) \quad(\text { ic., Moment due to the force at } B) \\
& =F a(\text { clockwisc })
\end{aligned}
$$

Sum of the moments at B :
Similarly, the sum of the moments of two parallel forces about the point B.

$$
\begin{aligned}
\sum M_{B B} & =\left(f^{\circ} \times a\right) \quad(\text { ie., Moment due to the force at } A) \\
& =F a(\text { clockwise })
\end{aligned}
$$

Sum of the moments at ' O ':
Now, let us find the sum of the moments of two parallel forces about O,

$$
\begin{aligned}
\Sigma M_{0} & =(F \times x)+F(a-x) \\
& =(F \times x)+(F \times a)-(F \times x) \\
& =F a \text { (clockwise) }
\end{aligned}
$$

Therefore, the sum of the moments of couple forces about any point is same in magnitude and nature.

Hence, we may state that, the moment of a couple is the product of any one of the parallel forces and perpendicular distance between the forces.

$$
\text { Moment of a couple }=\text { Force } \times \text { arm of the couple }
$$

$$
\mathbf{M}=\mathbf{F} \times \mathbf{a}
$$

Difference between Moment and Couple
The couple is a pure turning effect which may be moved anywhere in its own plane or into a parallel plane without change of its effect on the body, but the moment of a force must include a description of the reference axis about which the moment is taken.

Types of couples

Types of couple.
Couple is classified into two types based on its nature.
(i) Clockwise couple (ii) Anticlockwise couple

Clockwise couple acting on a body will have a tendency to rotate the body in clockwise direction, similarly anticlockwise couple will have a tendency to rotate a body in anticlockwise direction.

(i) Vertical
(ii) Horizontal
(iii) inclined

Clockwise Couple

(i) Vertical
(ii) Horizontal

- Anticlockwise Couple

Force-couple system

Resolution of a Force into a Force and a couple at a point (Force-Couple System).

Example

Force couple system at A

(b)

(c)

The given force $O n$ NN magnitude acting at B, on the rod $A C$, at a distance of 3 m from A is shown in fig Now it is to be replaced by a Force-couple at A. For this, apply two equal and opposite collinear forces at A parallel to the given force Now, 20 KN downward force at B, and 20 KN upward force at A form a couple. The moment of this couple $=(20 \times 3)=60 \mathrm{KN}-m$ (clockwise). Hence these two forces can be replaced by a mornent $60 \mathrm{KN}-\mathrm{m}$ at A. The third force, i.e, 20 KN downward force remains at A; it is unchanged. Hence, the final force 20 KN and couple $60 \mathrm{KN}-\mathrm{m}$ at A is shown in

Force-Couple system at C :

The given force is shown in at C, apply two equal and opposite collimear forces this force by an equivalent force-couple same magnitude (i.e. 20 KN) upward force at C form a couple. The Now 20 KN downward force at B, and 20 KN (anticlockwise). The third force, $i e$ moment of this couple about $\mathrm{C}=20 \times 2=40 \mathrm{KNm}$ C) shows the Force couple system at C.

A system of parallel forces are acting on rigid bar in diagram. Reduce the system to (a) single force (b) a single force and a couple at A (c) a single force and a couple at B

Solution

(i) Single force system

The single force system will consist only Resultant force. The given system of force is, unlike parallel vertical forces. (Coplanar)

Magnitude of resultant force, $(\uparrow+) R=30-150+70-10$

$$
=-60 \mathrm{~N}
$$

Direction of resultant force: Downwards (as R is negative)
As all the forces are vertical, ΣH will be zero ; hence Resultant force is also a vertical force, parallel to the given forces.

Location of Resultant force

Let us locate the resultant force with respect to the point A. Let, the perpendicular distance of resultant from A is ' x ' m. We know,
Sum of moments of all the given forces about $A,\left(\Sigma M_{A}\right)=(R \times x)$
Now, algebraic sum of moments of forces about A,

$$
\begin{aligned}
\Sigma M_{A} & =(30 \times 0)+(150 \times 1)-(70 \times 2)+(10 \times 3.5) \\
& =150-140+35 \\
& =45 \mathrm{KNm} \text { (Clu-kwise) }
\end{aligned}
$$

Hence, resultant force also produces clockwise moment about A, We have alreafy see, that resultant force is acting vertically downwards. So, to produce clockwise momem an acting downwards it will be on th. right side of A.
now, using $\Sigma M_{A}=R \times x$

$$
\text { or } x=\frac{\Sigma M_{A}}{R}=\frac{45}{60}=0.75 \mathrm{~m}
$$

Hence, the given system of parallel forces is equivalent to a single force 60 N acting vertically downvard at a distance of 0.75 m from A on its right hand side as shown in"

(ii) A single force and a couple sit A

Let the
The resultant force of the given system of forces is again shown in Resultant force cuts the rod $A B$ at M (75 m from A) Now forces at A, parallel to the resultarit a force-couple system at A, mincoduce as shown in fig.

Now, the downvard $60 N$ force at $A \not A$ and upwand 60 N force at A form a clockwise couple. The moment of this couple at A is $(60 \times 0.75)=45 \mathrm{Nm}$ and the third force at A (60 N downward) is unchanged.
\Rightarrow shows the force-couple system at A.
(iii) A single force and a couple at B

Force-couple at B
The resultant force of the given system of forces is again shown ;
\because but the distance of resultant force is measured from B. The distance $M B=A B-M=1$

$$
=3.5-0.75=2.75 \mu 1
$$

Now, to reduce this resultance force into a force-couple system at B, introduce two unlike collinear forces at B, parallel to the resultant force and of same magnitude ($60 N$). as shovi

Now, the downward 60 N force at M and upward 60 N force at B form an a.nciockwise couple. The moment of this couple is $(60 \times 2.75)=165 \mathrm{Nm}$, and the third force at $B(60 \mathrm{~N}$ downward $)$ is unchanged. . hows the force-couple system at B.

The three forces and a couple of magnitude, $\mathrm{M}=18 \mathrm{Nm}$ are applied to an angled bracket as shown (a) find the resultant of system of forces (b) locate the points where the line of action of the resultant intersects line $A B$ and line $A C$

Solution :

The given force system is again drawn in fig.
forse, 125 N .
(i) Resultant force:

Algebraic sum of Horizontal forces,

$$
\Sigma H=125 \cos 60-200=-137.5 N
$$

Algebraic sum of vertical forces,

$$
\Sigma V=125 \sin 60-50=58.25 \mathrm{~N}
$$

Magnitude of resultant force,

$$
\begin{aligned}
R=\sqrt{(\Sigma H)^{2}+(\Sigma V)^{2}} & =\sqrt{(137.5)^{2}+(58.25)^{2}} \\
& =149.32 N
\end{aligned}
$$

Disection of resultant force, a

$$
\begin{aligned}
=\tan ^{-1}\left(\frac{\sum V}{\Sigma F I}\right) & =\tan ^{-1}\left(\frac{5825}{137.5}\right) \\
& =22.95^{\circ}
\end{aligned}
$$

Whatever be the magnitude and nature o
the magnitude and direction of resultant force.

Location of resultant force :
Let us locate the resultant force with respect to the point A. Hence, we will find th algebraic sum of moments about A

$$
\begin{aligned}
\Sigma A_{A} & =(200 \times 0.2)-(125 \sin 60 \times 0.3)-18 \\
& =40-32.475-18 \\
& =-10.475 \mathrm{Nm} \quad \text { Negative sign shows anticlockwise moment }
\end{aligned}
$$

1) In InA equation -18 refers to the anticlockwise couple at A and also the and moments of $50 N$ and 125 cos 60 N forces about A are zera.
2) $\sum \mathrm{MA}_{\mathrm{A}}$ is Negative, hence resultant force should also produce an anticlockwise moment about A. To have the anticlockwise moment of resultant force and to act in direction as shown above, resuitantiforce should be taken on the right hand side of A.

Let the perpendicular distance of resultant force from A be ' x ' m.
Applying Varignon's theorem,

$$
\begin{aligned}
\text { i.e. } & \sum M_{A}=R \times x \\
\therefore x & =\frac{\Sigma N_{A}}{R}=\frac{10.475}{149.32}=0.07 \mathrm{~m}=70 \mathrm{~mm}
\end{aligned}
$$

