Thermodynamic Concepts

Outline

- System, Surrounding, State.
- Path Property, Reversible and Irreversible Process.
- Thermodynamic Work, Heat, Temperature, Thermal Equilibrium.
- Zeroth Law

Introduction

Thermodynamics $=\underset{\text { (Heat) }}{\text { Therme }}+\underset{\text { (Power) }}{\text { (Hynamis }}$

Aspects related to Energy and Energy Transformation

- Power Generation
- Refrigeration
- Relationships among Properties of Matter

System \& Surroundings

SYSTEM :

Quantity of matter or region in space, chosen for study.

SURROUNDINGS

SURROUNDINGS :

Mass or region outside the SYSTEM.
BOUNDARY :
Real / Imaginary surface that separates the SYSTEM from SURROUNDINGS.

BOUNDARY :
Fixed / Movable
Shared by both, SYSTEM and SURROUNDINGS
No Thickness
No Mass / Volume

Types of Systems

CLOSED
System

CLOSED System with Moving Boundary

Also known as CONTROL MASS

Types of Systems

ISOLATED

System

Types of Systems

OPEN
System
BOUNDARY of OPEN System is known as CONTROL SURFACE

Also known as CONTROL VOLUME
e.g. Water Heater, Car Radiator, Turbine, Compressor

Properties of System

Any characteristic of a System is known as its PROPERTY.
e.g. Pressure (\mathbf{P}), Volume (V), Temperature (T) and mass (m), etc. also Viscosity (μ), Electric Resistance (\mathbf{R}), Thermal Conductivity (k), etc.

Intensive : Independent on mass of system.

- e.g. Velocity (c), Elevation (h), etc.

Extensive : Dependent on mass of system.

- e.g. Pressure (P), Density (ρ), etc.

Specific : Extensive properties per unit mass.

- e.g. Sp. Vol ($v=\mathrm{V} / \mathrm{m}$), Sp. Enthalpy ($h=H / m$), etc.

State \& Equilibrium

Assume a System NOT undergoing any change.

Set of properties to completely describe the condition of the system is known as its STATE

STATE 1

STATE 2

State \& Equilibrium

EQUILIBRIUM : State of Balance
Thermal Equilibrium :

- NO Temperature Gradient throughout the system.

Mechanical Equilibrium :

- NO Pressure Gradient throughout the system.

Phase Equilibrium :

- System having more than 1 phase.
- Mass of each phase is in equilibrium.

Chemical Equilibrium :

- Chemical composition is constant
- NO reaction occurs.

Path \& Process

Any change a system undergoes from one equilibrium state to another is known as PROCESS.

Series of states through which system passes during the process is known as its PATH.

Property A

Path \& Process

Process proceeds in such a manner that system remains infinitesimally close to equilibrium conditions at all times.

Quasi-Static

It is known as QUASI-STATIC or

QUASI-EQUILIBRIUM Process.

Non-Quasi-Static

Path \& Process

NOTE : Process Path is a CONTINUOUS line only if it is having Quasi-Static Process.

Non-Quasi-Static Process is denoted by a DASHED line.

Path \& Process

Cycle

CYCLE :

A system is said to have undergone a cycle if it returns to its ORIGINAL state at the end of the process.

Hence, for a CYCLE, the INITIAL and the FINAL states are identical.

Reversible / Irreversible Process

Reversible Process : Process that can be reversed without leaving any trace on the Surroundings.
i.e. Both, System and Surroundings are returned to their initial states at the end of the Process.

This is only possible when net Heat and net Work Exchange between the system and the surroundings is ZERO for the Process.

Quasi-Static Compression and Expansion

Pendulum

Reversible / Irreversible Process

Most of the Processes in nature are IRREVERSIBLE.
i.e. Having taken place, they can not reverse themselves spontaneously and restore the System to its original State.

e.g. Hot cup of coffee \longrightarrow Cools down when exposed to Surroundings.

But, \longrightarrow Warm up by gaining heat from Surroundings. i.e. w/o external Heat supply.

Reversible / Irreversible Process

Why REVERSIBLE Process?

1. Easy to analyse, as System passes through series of Equilibriums.
2. Serve as Idealised Model for actual Processes to be compared for analysis.
3. Viewed as Theoretical Limit for corresponding irreversible one.

Reversible Process leads to the definition of Second Law Efficiency; which is Degree of Approximation (Closeness) to the corresponding Reversible Process.
(\uparrow)Better the Design, (\downarrow)Lower the Irreversibilities; (\uparrow) Second Law Efficiency.

Temperature

TEMPERATURE :

- No EXACT Definition.
- Broad Definition : "Degree of Hotness / Cold"
- This definition is based on our physiological sensation.
- Hence, may be misleading.
- e.g. Metallic chair may feel cold than Wooden chair; even at SAME temperature.
- Properties of materials change with temperature.
- We can make use of this phenomenon to deduce EXACT level of temperature.

Temperature Scales

1. Celsius Scale (${ }^{\circ} \mathrm{C}$) - SI System
2. Fahrenheit Scale (${ }^{\circ}$ F) - English System
3. Kelvin Scale (K) - SI System
4. Rankine Scale (R) - English System

Celsius Scale and Fahrenheit Scale - Based on 2 easily reproducible fixed states, viz. Freezing and Boiling points of water. i.e. Ice Point and Steam Point

Thermodynamic Temperature Scale - Independent of properties of any substance.

- In conjunction with Second Law of Thermodynamics

Thermodynamic Temperature Scale - Kelvin Scale and Rankine Scale.

Temperature Scales

Conversion Factors :

$T(K)=T\left({ }^{\circ} C\right)+273.15$
$\mathbf{T}(\mathbf{R})=\mathbf{T}\left({ }^{\circ} \mathbf{F}\right)+459.67$
$\mathbf{T}\left({ }^{\circ} \mathbf{F}\right)=1.8 \mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)+32$
$\mathbf{T}(\mathbf{R})=1.8 \mathrm{~T}(\mathrm{~K})$

Pressure

Definition : Normal Force exerted by a fluid per unit Area.

SI Units :

1 Pa	$=1 \mathrm{~N} / \mathrm{m}^{2}$
1 kPa	$=10^{3} \mathrm{~Pa}$
$1 \mathrm{MPa}=10^{6} \mathrm{~Pa}=10^{3} \mathrm{kPa}$	
$1 \mathrm{bar}=10^{5} \mathrm{~Pa}=0.1 \mathrm{MPa} \quad=100 \mathrm{kPa}$	
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$	
$1 \mathrm{kgf} / \mathrm{cm}^{2}=9.81 \mathrm{~N} / \mathrm{m}^{2}=9.81 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}=0.981 \mathrm{bar}=0.9679 \mathrm{~atm}$	

English Units :
psi = Pound per square inch (lbf/in ${ }^{2}$)
$1 \mathrm{~atm} \quad=14.696 \mathrm{psi}$
1 kgf/cm ${ }^{2}=14.223$ psi

Pressure

Absolute Pressure : Actual Pressure at a given position.

Measured relative to absolute vacuum i.e. absolute zero pressure.

Pressure Gauges are generally designed to indicate ZERO at local atmospheric pressure.

Hence, the difference is known as Gauge Pressure.
i.e. $\mathbf{P}($ gauge $)=\mathbf{P}(\mathbf{a b s})-\mathbf{P}(\mathrm{atm})$

Pressure less than local atmospheric pressure is known as Vacuum Pressure.
i.e. $P($ vacuum $)=P(a t m)-P(a b s)$

Pressure

$$
\begin{aligned}
& \mathbf{P}(\text { gauge })=\mathbf{P}(\text { abs })-\mathbf{P}(\text { atm }) \\
& \mathbf{P}(\text { vacuum })=\mathbf{P}(\mathbf{a t m})-\mathbf{P}(\text { abs })
\end{aligned}
$$

Ideal \& Real Gas

Any equation that relates the Pressure, Temperature and $\mathbf{S p}$. Volume of the substance is known as Equation of State.

In 1662, Robert Boyle, observed that Pressure of the gas is inversely proportional to its Volume.

$$
\text { i.e. } P V=C
$$

In 1802, J. Charles and J. Gay-Lussac, observed that Volume of the gas is directly proportional to its Temperature.

$$
\begin{aligned}
& \text { i.e. } \mathrm{V} / \mathrm{T}=\mathrm{C} \\
& \Rightarrow P=R\left(\frac{T}{v}\right) \quad \text { OR } \quad P v=\boldsymbol{R} T
\end{aligned}
$$

This equation is called Ideal Gas Equation of State.
The hypothetical gas that obeys this law, is known as Ideal Gas.

Ideal \& Real Gas

R is the Constant of Proportionality, given by the unit (kJ / kg.K)

Now, $\mathbf{V}($ Total Volume $)=\mathbf{m} . \mathbf{v}(\mathbf{S p}$. Vol. $)$

$$
\rightarrow \quad P V=m R T
$$

Thus, for a fixed mass;

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Behaviour of a Real Gas approaches to the that of an Ideal Gas, at low densities. Thus, at low pressures and high temperatures, the density of the gas decreases and the gas approaches to Ideal Gas.

Ideal \& Real Gas

Application of Ideal Gas Equation is limited to a specific range.
Therefore, it is required to have more accurate predictions for a substance, over a larger region and without limitations.

Several equations are proposed by various scientists and researchers.

1. Van der Waal's Equation of State :

$$
\left(P+\frac{a}{v^{2}}\right)(v-b)=R T \quad a \text { and } b \text { are Constants. }
$$

This equation takes into account :

1. Intermolecular attraction forces.
2. Volume occupied by the molecules themselves.

Ideal \& Real Gas

2. Beattie - Bridgeman Equation of State :

$$
P=\frac{R_{u} T}{v^{2}}\left(1-\frac{c}{v T^{3}}\right)(v+B)-\frac{A}{v^{2}}
$$

Where, $\quad A=A_{0}\left(1-\frac{a}{v}\right) \quad$ And $\quad B=B_{0}\left(1-\frac{b}{v}\right)$
3. Benedict - Webb - Rubin Equation of State :

$$
P=\frac{R_{u} T}{v}+\left(B_{0} R_{u} T-A_{0}-\frac{c}{T^{2}}\right) \frac{1}{v^{2}}+\frac{b R_{u} T-a}{v^{3}}+\frac{a \alpha}{v^{6}}+\frac{c}{v^{3} T^{2}}\left(1+\frac{\gamma}{v^{2}}\right) e^{-\gamma / v^{2}}
$$

Thermal Equilibrium

Thermal Equilibrium : NO change w.r.t. Temperature NO Temperature Gradient.

HOT cup of tea / coffee cools off w.r.t. time.

When a body is brought in contact with another body at different temperature, heat is transferred from the body at higher temperature to that with lower one; till both attain a THERMAL EQUILIBRIUM.

Heat \& Work

Energy can cross the Boundary of the System in 2 forms : 1. Heat
2. Work

Heat is a form of Energy transferred between 2 Systems
(or a System and the surroundings) by virtue of
Temperature Difference (Δ T).
i.e. Heat is Energy in TRANSITION.

Process involving no Heat Exchange is known as ADIABATIC Process.

Heat \& Work

Possibilities of Adiabatic Process :

1. Perfect Insulation : Negligible Energy transfer through Boundary.
2. Both System and Surrounding at same temperature.
\longrightarrow No Energy transfer due to absence of driving force (ΔT).

NOTE : Adiabatic Process \neq Isothermal Process

No Heat Transfer
Energy content \& temperature of the system can be changed with help of Work.

Heat \& Work

Energy Transfer in from of Heat by 3 ways :

CONDUCTION : Transfer of Energy from a more energetic particle of a substance to the adjacent less energetic one, as a result of interaction between them.

CONVECTION : Transfer of Energy between a solid surface and the adjacent fluid that is in motion. It involved both, the combined effect of conduction and fluid motion.

RADIATION : Transfer of Energy due to the emission of electromagnetic waves.

Heat \& Work

WORK : Work is the Energy transfer associated with a Force acting through a distance. Denoted by J or kJ.
e.g. Raising Piston,

Rotating Shaft, etc.

Heat \& Work

Sp. Work = Work per unit Mass

$$
w=W / m \quad(\mathrm{~J} / \mathrm{kg})
$$

Power = Work per unit Time

$$
\mathbf{P}=\mathbf{W} / \text { time }(\mathrm{J} / \text { sec OR W })
$$

Sign Convention :

Heat Transfer TO a System : + ve
Heat Transfer FROM a System : - ve
Work done BY a System
:+ ve
Work done ON a System
: - ve

Heat \& Work

Similarities between HEAT \& WORK :

1. Both are recognised at the Boundary of the System, as they cross the Boundary. Hence both are Boundary Phenomena.
2. System possesses Energy, but neither Heat nor Work.
3. Both are associated with Process, not State. Heat and Work have NO meaning at a State.
4. Both are Path Functions.

Path Function : Magnitude depends on the Path followed during the Process, as well as the End States.

Point Function : Magnitude depends on State only, and not on how the System approaches that State.

Heat \& Work

Path Functions have Inexact Differentials, designated by symbol δ.
Thus, a differential amount of Heat or Work is represented as δQ or δW; in stead of $d Q$ or $d W$.

Properties, on the other hand, are Point Functions, and have Exact Differentials, designated by symbol d.

Heat \& Work

e.g. Small change in Volume, is represented as $d V$, and is given by;

$$
\int_{1}^{2} d V=V_{2}-V_{1}=\Delta V
$$

Thus, Volume change during Process $1 \mathbf{- 2}$ is always $=$ (Volume at State 2) minus (Volume at State 1). Regardless of path followed.

HOWEVER, total Work done during Process 1 - $\mathbf{2}$ is;

$$
\int_{1}^{2} d W=W_{12}(N O T \Delta W)
$$

i.e. Total Work is obtained by following the Process

Path and adding the differential amounts of Wok (δW) done along it.

Integral of δW is $\neq\left(\mathbf{W}_{2}-\mathbf{W}_{1}\right)$.

Specific Heat

Different materials require different amount of Energy for their temperatures to increase thought unit quantity (i.e. $1^{\circ} \mathrm{C}$) for identical mass.

4.5 kJ

Hence, it is required to define a Property to compare the ENERGY STORAGE CAPACITY of different substances.

This Property is known as SPECIFIC HEAT.

Specific Heat

DEFINITION :

The Energy required to raise the temperature of a unit mass of a substance by $\mathbf{1}$ degree.

Specific Heat at Constant Pressure (C_{P}) :
The Energy required to raise the temperature of a unit mass of a substance by $\mathbf{1}$ degree, as the Pressure is maintained CONSTANT.

Specific Heat at Constant Volume (C_{V}) :
The Energy required to raise the temperature of a unit mass of a substance by $\mathbf{1}$ degree, as the Volume is maintained CONSTANT.

Specific Heat

3.12 kJ

$$
\mathrm{C}_{\mathrm{V}}=3.12 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}
$$

$$
\mathrm{C}_{\mathrm{V}}=5.19 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}
$$

C_{P} is always greater than C_{V}; as the System is allowed to expand in case of

Const. Pr. and the Energy for this expansion Work is also need to be supplied.

Specific Heat

Consider a System with fixed mass and undergoing Const. Vol. Process (expansion / compression).

First Law of Thermodynamics $\rightarrow \mathbf{e}_{\text {in }}-\mathbf{e}_{\text {out }}=\Delta \mathbf{e}_{\text {system }}$
Since it is a Const. mass System;
Net amount of Change of Energy = Change in Internal Energy (u).
i.e. $\delta e_{\text {in }}-\delta e_{\text {out }}=d u$
$d u=C_{V} d T \quad$...by Definition of $\mathbf{C}_{\mathbf{V}}$
$\Rightarrow C_{V}=\left(\frac{\partial u}{\partial T}\right)_{V}$
$d h=C_{P} d T \quad \ldots$ by Definition of $\mathbf{C}_{\mathbf{P}}$
$\Rightarrow C_{P}=\left(\frac{\partial h}{\partial T}\right)_{P}$

Hence, C_{V} is change in Internal Energy of a substance per unit change in temperature at constant Volume.

Hence, C_{P} is change in Enthalpy of a substance per unit change in temperature at constant Pressure.

Specific Heats of Ideal Gases

$$
h=u+P v \quad \text {....by Definition of Enthalpy }
$$

$$
\text { But, } \mathbf{P v}=\mathrm{RT} \quad \text {....by Ideal Gas Law }
$$

Thus, $h=u+R T$

$$
\begin{aligned}
& d h=d u+R d T \\
& C_{P} d T=C_{V} d T+R d T \ldots \text {...by Definition of } C_{P} \text { and } C_{V} \\
& C_{P}=C_{V}+R \quad(\mathrm{~kJ} / \mathrm{kg} . \mathrm{K})
\end{aligned}
$$

Specific Heat Ratio, \boldsymbol{k} (or γ) is given by;

$$
k(\operatorname{or} \gamma)=\frac{C_{P}}{C_{V}}
$$

PdV Work

Let the Piston be moving from
Thermodynamic Equilibrium State $1\left(P_{1}, V_{1}\right)$ to State $2\left(P_{2}, V_{2}\right)$.

Let the values at any intermediate
Equilibrium State is given by \mathbf{P} and V .

For an Infinitesimal displacement, $d L$, the Infinitesimal Work done is;

$$
d W=F * d L=P * A * d L=P d V
$$

Similarly, for Process 1 - 2; we can say that;

$$
W_{1-2}=\int_{V_{1}}^{V_{2}} P d V
$$

PdV Work

PdV Work in Different Quasi-Static Processes :

$$
W_{1-2}=\int_{V_{1}}^{V_{2}} P d V=P\left(V_{2}-V_{1}\right)
$$

PdV Work

PdV Work in Different Quasi-Static Processes :

$$
W_{1-2}=\int_{V_{1}}^{V_{2}} P d V=0
$$

PdV Work

PdV Work in Different Quasi-Static Processes :

PdV Work

PdV Work in Different Quasi-Static Processes :

Volume

$$
\begin{aligned}
& P V^{n}=P_{1} V_{1}^{n}=P_{2} V_{2}^{n}=C \Rightarrow P=\frac{P_{1} V_{1}^{n}}{V^{n}} \\
& W_{1-2}=\int_{V_{1}}^{V_{2}} P d V \\
& W_{1-2}=\int_{V_{1}}^{V_{2}} P_{1} V_{1}^{n} \frac{d V}{V^{n}}=P_{1} V_{1}^{n}\left[\frac{V^{-n+1}}{-n+1}\right]_{V_{1}}^{V_{2}} \\
& =\frac{P_{1} V_{1}^{n}}{1-n}\left(V_{2}^{1-n}-V_{1}^{1-n}\right)=\frac{P_{2} V_{2}^{n} X V_{2}^{1-n}-P_{1} V_{1}^{n} X V_{1}^{1-n}}{1-n} \\
& =\frac{P_{1} V_{1}-P_{2} V_{2}}{n-1}=\frac{P_{1} V_{1}}{n-1}\left[1-\left(\frac{P_{2}}{P_{1}}\right)^{n-1 / n}\right]
\end{aligned}
$$

Zeroth Law of Thermodynamics

STATEMENT :

If two bodies are in Thermal Equilibrium with the third body, then they are also in
Thermal Equilibrium with each other.

This statement seems to be very simple.
However, this can not be directly concluded from the other Laws of Thermodynamics. It serves as the basis of validity of TEMPERATURE measurement.

Zeroth Law of Thermodynamics

By replacing the Third Body with a Thermometer; the Zeroth Law can be stated as : Two bodies are in Thermal Equilibrium, if both have same TEMPERATURE, regarding even if they are not in contact with each other.

i.e. Temp (A) measured by Thermometer and is known.
(A) is in Thermal Equilibrium with (B).

Then, Temp (B) is also known, even not in contact with Thermometer.

Zeroth Law of Thermodynamics

- Formulated and labeled by R.H. Fowler in 1931.
- However, its significance is realised after half a century after formation of First and

Second Laws of Thermodynamics.

- Hence named as Zeroth Law of Thermodynamics.

