First Law of Thermodynamics

Also known as Law of Conservation of Energy

Important due to its ability to provide a sound basis to study between different forms of Energy and their interactions.

STATEMENT :

Energy can neither be created nor destroyed during a process; but can be only converted from one form to another.

m g
$$\Delta z = \frac{1}{2}$$
 m (**v**₁² - **v**₂²)

First Law of Thermodynamics

This forms the basis for Heat Balance / Energy Balance.

Net change (increase / decrease) in the total Energy of the System during a Process = Difference between Total Energy entering and Total Energy leaving the System during that Process.

Total Energy
entering the SystemTotal Energy
leaving the SystemChange in Total Energy
of the System (E_{IN}) (E_{OUT}) (ΔE)

Hot cup of coffee gets cooled off when exposed to surrounding. Energy lost by coffee = Energy gained by Surroundings. Here, First Law of Thermodynamics is satisfied. HOWEVER, converse is <u>NOT</u> true. i.e. Taking out Heat Energy from Surroundings ≠ Coffee getting hot.

Still, First Law of Thermodynamics is satisfied !

Heating of a room by Electric heater; by passing Electric **Current through the Resistor. Electric Energy supplied to the heater = Energy transferred to the Surroundings (room air).** Here, First Law of Thermodynamics is satisfied. HOWEVER, converse is NOT true. **Transferring Heat to the wire** \neq **Equivalent amount of Electric Energy generated in wire.** Still, First Law of Thermodynamics is satisfied !

Paddle Wheel mechanism operated by falling mass. Paddle wheel rotates as mass falls down and stirs the fluid inside the container. **Decrease in Potential Energy of the mass = Increase in Internal Energy of the fluid.** Here, First Law of Thermodynamics is satisfied. **HOWEVER**, converse is NOT true. **Transferring Heat to the Paddle Wheel** \neq **Raising the mass.** Still, First Law of Thermodynamics is satisfied !

From these day – to – day life examples, it can be clearly seen that; Satisfying the First Law of Thermodynamics does not ensure for a Process to occur actually.

Processes proceed in certain direction; but may not in Reverse direction.

First Law of Thermodynamics has no restriction on the DIRECTION of a Process to occur.

This inadequacy of the First Law of Thermodynamics; to predict whether the Process can occur is solved by introduction of the Second Law of Thermodynamics.

SIGNIFICANCE :

- 1. Second Law of Thermodynamics is <u>not just limited</u> to identify the direction of the Process.
- 2. It also asserts that Energy has quantity as well as *Quality*.
- 3. It helps to determine the *Degree of Degradation* of Energy during the Process.
- 4. It is also used to determine the *Theoretical Limits* for the performance of the commonly used engineering systems, such as Heat Engines and Refrigerators.

Thermal Energy Reservoir :

Hypothetical body with relatively very large *Thermal Energy Capacity* (mass x Sp. Heat) that can supply or absorb finite amount of Heat without undergoing change in Temperature.

e.g. ocean, lake, atmosphere, two-phase system, industrial furnace, etc.

Reservoir that supplies Energy in form of Heat is known as SOURCE.

Reservoir that absorbs Energy in form of Heat is known as SINK.

From such examples, it can be concluded that,

- 1. Work can be converted to Heat.
- 2. BUT, Converting Heat to Work requires special devices.

These devices are known as Heat Engines.

Characteristics of Heat Engines :

- They receive the Heat from High-Temp Reservoir (i.e. Source) (e.g. Solar Energy, Oil Furnace, Nuclear Reactor, etc.).
- They convert part of this Heat to Work

 (Usually in form of rotating shaft).
- 3. They reject the remaining Heat to Low-Temp Reservoir (i.e. Sink) (e.g. Atmosphere, River, etc.)
- 4. They operate on a <u>CYCLE</u>.

Heat Engines are generally Work – Producing devices,e.g. Gas Turbines, I.C. Engines, Steam Power Plants, etc.

HEAT ENGINE :

STEAM POWER PLANT:

Heat Engine must give away some heat to the Low Temperature Reservoir

(i.e. Sink) to complete the Cycle.

Thus, a Heat Engine <u>must</u> exchange Heat with at least **TWO** Reservoirs for continuous operation.

This forms the basis for the Kelvin – Planck expression of the Second Law of Thermodynamics.

Kelvin – Planck Statement :

It is impossible for any device that operates on a Cycle to receive Heat

from a single Reservoir and produce net amount of Work.

REFRIGERATOR / HEAT PUMP :

REFRIGERATOR / HEAT PUMP:

Clausius Statement :

It is impossible to construct a device that operates in a Cycle, and produces no effect other than the transfer of Heat from a Lower Temperature Body to a Higher Temperature body.

Warm **Environment** $Q_{\rm H} =$ 5 kJ Wnet = 0**Refrigerator** $Q_L = 5 kJ$ **Refrigerated Space**

Alternatively;

No Refrigerator can operate unless its compressor is supplied with external Power source.

This Proves that;

Violation of Kelvin – Planck Statement results in violation of Clausius Statement. Converse is also True.