

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

MAXIMA AND MINIMA

_	NO average					
0	MAXIMA OR MINIMA					
(4)	CRITICAL POINT OR STATIONARY POINT.					
	CRITICAL POINT OR STATIONARY POINT. Point of the function Critical point or stationary is a					
	$point(a,b)$ if $\frac{\partial b}{\partial x} = 0$ rat (a,b) .					
	NECESSARY CONDITION					
	The recessory cons	dition for the function f(x,y)				
	rima or minima at the					
	point (a,b) is $\frac{\partial f}{\partial y} = 0$, $\frac{\partial f}{\partial y} = 0$ at (a,b)					
	SUFFICIENT CONDITION					
	Let $A = \frac{\partial^2 f}{\partial x^2}$, $B = \frac{\partial^2 f}{\partial x \partial y}$, $C = \frac{\partial^2 f}{\partial y^2}$					
	$ \begin{array}{ccc} 1) & & & & & & & & & & \\ & & & & & & & & \\ & & & & $	Minimum value.				
	ii) If AC-B">0, A<0	Maximum value.				
	iii) If AC-B2<0,	Meither maximus ros minimum (Saddle point)				
3	iv) If AC -B2=0	Inconclusive.				

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

MAXIMA AND MINIMA

Find the maxima & minima of function
$$\begin{cases}
f(x, y) = x^3 + 3xy^2 - 16x^2 - 16y^2 + 72x \\
\frac{\partial f}{\partial x} = 3x^2 + 3y^2 - 30x + 72
\end{cases}$$

$$\frac{\partial f}{\partial y} = 6xy - 30y$$

$$\frac{\partial f}{\partial x} = 0 \Rightarrow 6xy - 30y = 0$$

$$9 \Rightarrow 6y(x - 5) = 0$$

$$y = 0 \qquad x - 5 = 0$$

$$x = 5$$
Put $y = 0$ in 0

$$3x^2 * - 30x + 72 = 0$$

$$x = 4, 6$$

$$\therefore \text{ The point is } (4, 0), (6, 0).$$
Put $x = 6$ in 0

$$75 + 3y^2 - 150 + 70 = 0$$

$$3y^2 - 3 = 0$$

$$y^2 = 1$$

$$y = \pm 1$$
The point is $(5, -1)$, $(5, 1)$

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

MAXIMA AND MINIMA

IONS OF	SEVER	RAL VAR	IABLE	5	MAXIMA AND M
	The c	m = (4/x)} = (at			
(4)	0),(6,0),	(5,-	-1), (万))
	21	= 6%			
				= 69.	
		6x.			
Critical	A	В	c	AC-B2	Conclusion.
(6,0)	6	0	6	36	Minimum value
(4,0)	-6	0	-6	36	Maximum value
(5,1)	0	6	0	-36	saddle point.
(5,-1)	0	-6	0	-36	Saddle point
				0 = x = x	
Ma	ximu	n valu	e = fr	,0) = 112	
Man	unun	value	-= = = = = = = = = = = = = = = = = = =	(6,0) = 1	08.
				a- H	

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

MAXIMA AND MINIMA

2.
$$f(x,y) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$$

$$\frac{\partial f}{\partial x} = 3x^2 + 3y^2 - 6x = 0$$

$$x^2 + y^2 - 2x = 0$$

$$\frac{\partial f}{\partial x} = 0 \Rightarrow 3x^2 + 3y^2 - 6x = 0$$

$$x^2 + y^2 - 2x = 0$$

$$\frac{\partial f}{\partial x} = 0 \Rightarrow 6xy - 6y = 0$$

$$xy - y = 0 - 0$$

$$\frac{\partial f}{\partial x} = 0 \Rightarrow 6xy - 6y = 0$$

$$xy - y = 0 - 0$$

$$\frac{\partial f}{\partial x} = 0 \Rightarrow 6xy - 6y = 0$$

$$xy - y = 0 - 0$$

$$x = 0 \qquad x = 1$$
Put $y = 0$ in 0

$$x^2 - 2x = 0$$

$$x (x - 2) = 0$$

$$x = 0 \qquad x = 2$$

$$\frac{\partial f}{\partial x} = 0 \Rightarrow 0 \Rightarrow 0$$

$$x = 0 \qquad x = 1$$
Put $y = x = 1$ in 0

$$1 + y^2 - 2 = 0$$

$$y^2 - 1 = 0$$

$$y^2 = 1 \Rightarrow y = \pm 1$$
The point is $(1, 1), (1, -1)$

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

MAXIMA AND MINIMA

ONS OF SEV			MAXIMA AND		
The	viiii	5	(1,-1)		
A - f	xx = 6	x -6			
	xy = 6				
$c = f_c$	= 6	x-6			
Contical point	A	В	C	AC-BL	Conclusion
(0,0)	-6	0	-6	36	Maximum Vale
(2,0)	6	0	6	36	Minimum Valu
(1,1)	0	6	D	-36	saddle point.
(1,-1)	D	-6	0	-36	Saddlepoint
(4-1,6	(t, e), (t,	T) LIU	dasen		
Max	inum	value =	f(0,0)	= 4.	
Min	imum 1	value =	f(2,0)	= 8-1	2+4
				=0	

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

MAXIMA AND MINIMA

3.
$$f = x^{3} + y^{2} - 12x - 3y + 20.$$

$$\frac{\partial h}{\partial x} = 3x^{2} - 12$$

$$\frac{\partial h}{\partial y} = 3y^{2} - 3$$

$$\frac{\partial h}{\partial x} = 0 \Rightarrow 3x^{2} - 12 = 0 \quad \text{(1)}$$

$$3(x^{2} - h) = 0 \Rightarrow x^{2} - h = 0 \quad \text{(2)}$$

$$x^{2} = h \Rightarrow x = \pm 2$$

$$\frac{\partial h}{\partial x} = 0 \Rightarrow 3y^{2} - 3 = 0 \Rightarrow x^{2} - h = 0$$

$$y^{2} - 1 = 0 \quad \text{(2)}$$

$$y^{2} = 1$$

$$y = \pm 1$$

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

MAXIMA AND MINIMA

Critical point.	A	В	C	AC-B2	Conclusion.
(2,1)	1121A	0	6	7.2	Marimum Value
(2,-1)	12	0	-6	-72	Saddle point.
(-2,1)	-12	6	6	-72	Saddle point
(-2,-1)	-12	0	-6	T2	Maximum valu
			14 1) -	
Ma	nimum	value	$=f_{\left(-2\right)}$	= -8	-1+24+3+2
				= 24 - 6 +	
				= 420	
			141	= 400,38	
Mir	rimum	value -	=f(2)	1) = 8+1-	¥24-3+20
				= 9-4	
				= 2	