

AN AUTONOMOUS INSTITUTION

COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

TAYLOR'S SERIES EXPANSION

TAYLOR'S SERIES EXPANSION
point (a,b) , $h = x-a$, $k = y-b$
$f(x,y) = f(a,b) + \frac{1}{1!} [hf_{ex} + kfy]$
$+\frac{1}{2!}\left[h^2f_{\chi\chi}+2hkf_{\chi y}+k^2f_{yy}\right]$
$+\frac{1}{3!}\left[h^{3}f_{xxx}+3h^{2}kf_{xy}+3hk^{2}f_{xyy}+K^{3}f_{yyy}\right]$
+

AN AUTONOMOUS INSTITUTION **COIMBATORE – 641035.**

UNIT-4 FUN

NSION

NCTIONS OF S	EVERAL VARIABLES	TA	YLOR'S SERIES EXPAN
1	Enjand excorgy	מ עמי	toujes serves in
	nowers of a and y	synto	third degree
	$f(x,y) = e^x \cos y$	+	point is not given do but $h = x - a \Rightarrow h = x$
	≥(a,b) =(0,0)		
	h = x $K = y$		In an : given that in pa.
	f(a,b) = f(o,o)		So, $h=x$, $k=y$ a=0, $b=0$
	= e con 0 = 1		
	$f(x,y) = e^{x} \cos y$		At pt(0,0)
	$f_x = e^x \cos y$	Calasy	
	$ty = -e^x \sin y$	Wales I	0
	$fxn = e^x cosy$		hat y =
	$f_{xy} f_{xy} = -e^{x} \sin y$	S S S X Y	0 (d, p) day
	tyy = -e2 coxy	- 10	A H = THE
	All Harris	4 35	1 4 .
	$f_{2xx} = e^{x} \cos y$		-1
H [ttt	$f_{xxy} = -e^x \frac{\sin y}{\cos y}$	1 +3	0
	C		
		1	

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

TAYLOR'S SERIES EXPANSION

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES TAYLOR'S SERIES EXPANSION

NCTIONS OF	F SEVERAL VARIABLES	TAYLOR'S SERIES EXPAN
	$f(x,y) = e^x \sin y$	At n+ (0,0)
	$f_{\alpha} = e^{\alpha} \sin y$	0
	$fy = e^{x} \cos y$	1
	$f_{xx} = e^x \sin y$	0
	$f_{xy} = e^{x} \cos y$	1
To.	$fyy = -e^{x} \sin y$	0
Terry I	$f_{axx} = e^x iny$	0
Ill Treat	taxy = excosy	
*	$f_{xyy} = -e^x \sin y$	0
	$tyyy = -e^{x}\cos y$	-1 + x + 1 =
	$f(\alpha, y) = f(\alpha, b) + \frac{1}{1!} [f h]$	f~ + Kf. 7
		nktzy+ k²+yg]
	$+\frac{1}{3!} \left[h^3 f_{22} + 3h^2 k \right]$	faxy +3h k2fxyy + k3fyy
		0=61.019

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

TAYLOR'S SERIES EXPANSION

$$= 0 + \frac{1}{1!} \left[x(0) + y(1) \right] + \frac{1}{2!} \left[x^{2}(0) + 2xy(1) + y^{2}(0) \right]$$

$$+ \frac{1}{3!} \left[x^{3}(0) + 3x^{2}y(1) + 3xy^{2}(0) + y^{3}(-1) \right] + ...$$

$$= \frac{1}{1!} \left[y \right] + \frac{1}{2!} \left[2xy \right] + \frac{1}{3!} \left[3x^{2}y + -y^{3} \right] + ...$$

$$f(x,y) = y + \frac{1}{2} \left(2xy \right) + \frac{1}{6} \left(3x^{2}y - y^{3} \right) + ...$$

$$f(x,y) = y + xy + \frac{1}{6} \left(3x^{2}y + y^{3} \right) + ...$$

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

TAYLOR'S SERIES EXPANSION

3. Expand
$$e^{\alpha} \log(1+y)$$
 in power of $n \ge y$ upto $\log^{2} x$

In $\log^{2} x$

2 nd degree.

$$f(\alpha, y) = e^{\alpha} \log(1+y)$$

$$(\alpha, b) = (0, 0)$$

$$h = \alpha$$

$$K = y$$

$$f(\alpha, b) = f(0, 0)$$

$$= (1) \log(1)$$

$$= 1 (0)$$

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

TAYLOR'S SERIES EXPANSION

$$f(x,y) = e^{x} \log (1+y)$$

$$f_{x} = e^{x} \log (1+y)$$

$$f_{xy} = e^{x} \log (1+y)$$

$$f_{xy} = e^{x} \log (1+y)$$

$$f_{yy} = e^{x} \left(\frac{1}{(1+y)}\right)$$

$$f(x,y) = f(a,b) + \frac{1}{11} \left[hf_{x} + kf_{y}\right]$$

$$+ \frac{1}{21} \left[h^{2}f_{xx} + 2hkf_{xy} + k^{2}f_{yy}\right]$$

$$= 0 + \frac{1}{1!} \left[x(0) + y(1)\right]$$

$$= \frac{1}{1!} \left[x^{2}(0) + 2xy(1) + y^{2}(-1)\right]$$

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

TAYLOR'S SERIES EXPANSION

4. Expand
$$xy^2 + 2x - 3y$$
 in power of $(x + 2) + (y - 1)$ unto 2nd degree.

$$f(x,y) = xy^2 + 2x - 3y$$

$$h = x - 2$$

$$(a,b) = (-2,1)$$

$$h = x + 2$$

$$ky = y - 1$$

$$f(a,b) = f(-2,1)$$

$$= (-2)(1) + 2(-2) - 3(1)$$

$$= -2 - 4 - 3$$

$$f(x,y) = xy^2 + 2x - 3y$$

$$f(x,y) = xy^2 + 2$$

$$f(x,y) = xy^2 + 2x - 3y$$

$$f(x,y) = xy^2 + 2x - 3y$$

$$f(x,y) = xy^2 + 2x - 3y$$

$$f(x,y) = 2xy - 3$$

AN AUTONOMOUS INSTITUTION COIMBATORE – 641035.

UNIT- 4 FUNCTIONS OF SEVERAL VARIABLES

TAYLOR'S SERIES EXPANSION

$$f(x,y) = f(a,b) + \frac{1}{1!} [hf_{x} + kf_{y}]$$

$$+ \frac{1}{2!} [h^{2}f_{xx} + 2hkf_{xy} + k^{2}f_{yy}]$$

$$+ ...$$

$$= -9 + \frac{1}{1!} [(x+2) + (y-1) - 7]$$

$$+ \frac{1}{2!} [(x+2)^{2} + 2(x+2)(y-1) + (y-1)^{2} + (y-1)^{2} - 4(y-1)^{2}] + ...$$

$$= -9 + 1[3x + 6 - 7y + 7]$$

$$+ \frac{1}{2} [4(x+2)(y-1) + -4(y-1)^{2}] + ...$$

$$= -9 + [3x - 7y + 13) + \frac{1}{2} [4(x+2)(y-1) - 4(y-1)^{2}] + ...$$