
UNIT II

Relational Data Model

Data is represented in the relational model is in the form of relation.

A relation consists of a relation schema and a relation instance

 Relation instance is a table,

 Relation schema describes the column heads for the table.

So, we first describe the relation schema and then the relation instance.

The schema specifies the relation's name, the name of each field (or column, or attribute),

and the domain of each fild. A domain is referred to in a relation schema by the domain

name and has a set of associated values.

We use the example of student

 Students (sid: string, name: string, login: string, age: integer, gpa: real)

An instance of a relation is a set of tuples, also called records, in which each tuple has the

same number of fields as the relation schema. A relation instance can be thought of as a

table in which each tuple is a row, and all rows have the same number of fields.

A relation schema specifies the domain of each field in the relation instance which specify an

important condition that we want each instance of the relation to satisfy: The values that

appear in a column must be drawn from the domain associated with that column.

Formally, let R(f1:D1, ..., fn:Dn) be a relation schema, and for each fi, 1 ≤ i ≤ n, let Domi be

the set of values associated with the domain named Di. An instance of R that satisfies the

domain constraints in the schema is a set of tuples with n fields

{ hf1 : d1, ... ,fn : dni | d1 ∈ Dom1, ... ,dn ∈ Domn }

The degree, also called arity, of a relation is the number of fields. The cardinality of a relation

instance is the number of tuples in it.

Creating and Modifying Relations

SQL-92 language standard uses the word table to denote relation.

Data Definition Language (DDL) is a subset of SQL that supports the creation, deletion, and

modification of tables:

To create a table To insert values into table

CREATE TABLE statement INSERT statement

CREATE TABLE Students (sid CHAR(20),

name CHAR(30), login CHAR(20), age

INTEGER, gpa REAL)

INSERT INTO Students (sid, name, login,

age, gpa) VALUES (53688, ‘Smith’,

‘smith@ee’, 18, 3.2)

To update records in a table To delete records

UPDATE statement DELETE statement

UPDATE Students S SET S.age = S.age + 1,

S.gpa = S.gpa - 1 WHERE S.sid = 53688

DELETE FROM Students S WHERE

S.name = ‘Smith’

Integrity constraints (IC) Key Constraints

It is the condition that is specified on a

database schema, and restricts the data that

can be stored in an instance of the database.

If a database instance satisfies all the

integrity constraints specified on the

database schema, it is a legal instance.

 When the DBA or end user defines a

database schema, he or she specifies

the ICs that must hold on any

instance of this database

When a database application is run, the

DBMS checks for violations and disallows

changes to the data that violate the specified

ICs.

A key constraint is a statement that a certain

minimal subset of the fields of a relation is a

unique identifier for a tuple

A set of fields that uniquely identifies a

tuple according to a key constraint is called

a candidate key for the relation

Superkey, is a set of fields that contains a

key

Example:

CREATE TABLE Students (sid CHAR(20),

name CHAR(30), login CHAR(20), age

INTEGER, gpa REAL, UNIQUE (name,

age), CONSTRAINT StudentsKey PRIMARY

KEY (sid))

Primary Key is a key that helps in uniquely identifying the tuple of the database

The foreign key in the referencing relation must match the primary key of the referenced

relation

Querying database

A relational database query (query, for short) is a question about the data, and the answer

consists of a new relation containing the result.

Example: SELECT * FROM Students S WHERE S.age < 18

SELECT S.name, S.login FROM Students S WHERE S.age < 18

Relational Algebra

Relational algebra is a procedural query language, which takes instances of relations as input

and produces instances of relations as output. It uses operators to perform queries.

Example

 Sailors (sid: integer, sname: string, rating: integer, age: real)

 Boats (bid: integer, bname: string, color: string)

 Reserves (sid: integer, bid: integer, day: date)

Basic operations:

 Selection (σ) Selects a subset of rows from relation.

 Projection (π) Selects a subset of columns from relation.

 Cross-product (×) Allows us to combine two relations.

 Set-difference () Tuples in relation. 1, but not in relationn. 2.

 Union (U) Tuples in reln. 1 and in reln. 2.

 Rename(ρ) Use new name for the Tables or fields.

Additional operations:

Intersection (∩), Join(), Division(÷): Not essential, but very useful. Since each operation

returns a relation, operations can be composed! (Algebra is “closed”.)

Selection and Projection

Relational algebra includes operators to select rows from a relation (σ) and to project

columns (π). These operations allow us to manipulate data in a single relation.

σrating>8(S2)

The selection operator σ specifies the tuples to retain through a selection condition. In

general, the selection condition is a boolean combination of terms with attributes

projection operator π allows us to extract columns from a relation. It eliminates duplicates

For example, find out all sailor names and ratings by

πsname,rating(S2)

Set Operations

Union

R∪S returns a relation instance containing all tuples that occur in either relation instance R or

relation instance S (or both).

R and S must be union –compatible means that both have same number of fields and fields

have same domains

Intersection:

R∩S returns a relation instance containing all tuples that occur in both R and S. The relations

R and S must be union-compatible

Set-difference

R−S returns a relation instance containing all tuples that occur in R but not in S.

Cross-product

 R ×S returns a relation instance whose schema contains all the fields of R (in the same order

as they appear in R) followed by all the fields of S (in the same order as they appear in S).

The result of R × S contains one tuple hr, si (the concatenation of tuples r and s) for each pair

of tuples r ∈ R, s ∈ S.

Renaming

The expression ρ(R(F), E) takes an arbitrary relational algebra expression E and returns an

instance of a (new) relation called R. R contains the same tuples as the result of E, and has

the same schema as E, but some fields are renamed.

Suppose,

Then, the renaming ρ(C(1 → sid1, 5 → sid2), S1 × R1) would be

Joins

join operation combine information from two or more relations. It can be defined as a cross-

product followed by selections and projections.

Conditional join

This join operation accepts a join condition c and a pair of relation instances as arguments,

and returns a relation instance.

R ⋈c S = σc(R × S)

Note that the condition c can refer to attributes of both R and S.

Equijoin

Join operation R⋈ S is when the join condition consists solely of equalities (connected by ∧)

of the form R.name1 = S.name2. Additional projection in which S.name2 is dropped when

the result is returned.

Natural Join

A special case of the join operation R⋈ S is an equijoin in which equalities are specified on

all fields having the same name in R and S. It has the nice property that the result is

guaranteed not to have two fields with the same name.

Division

Consider two relation instances A and B in which A has (exactly) two fields x and y and B

has just one field y. We define the division operation A/B as the set of all x values (in the

form of unary tuples) such that for every y value in (a tuple of) B, there is a tuple hx,yi in A..

Relational Calculus

 Relational calculus is an alternative to relational algebra.

 In contrast to the algebra, which is procedural, the calculus is nonprocedural, or

declarative,

Tuple Relational Calculus

The tuple relational calculus is specified to select the tuples in a relation. In TRC, filtering

variable uses the tuples of a relation.The result of the relation can have one or more tuples.

Notation:

 {T | P (T)} or

 {T | Condition (T)}

Where T is the resulting tuples and P(T) is the condition used to fetch T.

For example, to find all students whose age is greater than 22

 { t.Last_Name | Student(t) AND t.age > 30 }

In the above query you can see two parts separated by | symbol. The second part is where we

define the condition and in the first part we specify the fields which we want to display for

the selected tuples.

Another example,

Find the loan number, branch, amount of loans of greater than or equal to 10000 amount.

 {t| t ∈ loan ∧ t[amount]>=10000}

Formal Definition

Let Rel be a relation name, R and S be tuple variables, a an attribute of R, and b an attribute

of S. Let op denote an operator in the set {, =, ≤, ≥, 6=}. An atomic formula is one of the

following:

 R ∈ Rel

 R.a op S.b

 R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and q are themselves

formulas, and p(R) denotes a formula in which the variable R appears:

any atomic formula

 ¬p, p ∧ q, p ∨ q, or p ⇒ q

 ∃R(p(R)), where R is a tuple variable

 ∀R(p(R)), where R is a tuple variabl

Domain Relational Calculus

In domain relational calculus the records are filtered based on the domains. A domain

variable is a variable that ranges over the values in the domain of some attribute. In domain

relational calculus, filtering variable uses the domain of attributes. It uses Existential (∃) and

Universal Quantifiers (∀) to bind the variable.

A DRC query has the form

 {hx1, x2,...,xni | p(hx1, x2,...,xni)},

where each xi is either a domain variable or a constant and p(hx1, x2,...,xni) denotes a DRC

formula whose only free variables are the variables among the xi, 1 ≤ i ≤ n. The result of this

query is the set of all tuples hx1, x2,...,xni for which the formula evaluates to true

An atomic formula in DRC is one of the following:

 hx1, x2,...,xni ∈ Rel, where Rel is a relation with n attributes; each xi, 1 ≤ i ≤ n is

either a variable or a constant.

 X op Y

 X op constant, or constant op X

A formula is recursively defined to be one of the following, where p and q are themselves

formulas, and p(X) denotes a formula in which the variable X appears:

 any atomic formula

 ¬p, p ∧ q, p ∨ q, or p ⇒ q

 ∃X(p(X)), where X is a domain variable

 ∀X(p(X)), where X is a domain variabl

For example,

To find the first name and age of students where student age is greater than 27,

{ < First_Name, Age > | ∈ Student ∧ Age > 27 }

SQL

IBM Sequel language developed as part of System R project at the IBM San Jose Research

Laboratory

Renamed Structured Query Language (SQL).

The SELECT statement is used to select data from a database.

Basic structure of an SQL expression consists of select, from and where clauses.

 Select clause lists attributes to be copied - corresponds to relational algebra project.

 from clause corresponds to Cartesian product - lists relations to be used.

 where clause corresponds to selection predicate in relational algebra

The data returned is stored in a result table, called the result-set. To fetch the entire table or

all the fields in the table:

SELECT * FROM table_name;

To fetch individual column data

SELECT column1,column2 FROM table_name WHERE SQL claus

WHERE clause is used to specify/apply any condition while retrieving, updating or deleting

data from a table

For example, fetch the ID, Name and Salary fields from the CUSTOMERS table, where the

salary is greater than 20000

SELECT ID, NAME, SALARY FROM CUSTOMERS WHERE SALARY > 20000

From clause: From clause can be used to specify a sub-query expression in SQL. The relation

produced by the sub-query is then used as a new relation on which the outer query is applied.

 Sub queries in the from clause are supported by most of the SQL implementations.

 The correlation variables from the relations in from clause cannot be used in the

subqueries in the from clause.

Syntax:

SELECT column1, column2 FROM (SELECT column_x as C1, column_y FROM table

WHERE PREDICATE_X) as table2 WHERE PREDICATE;

SET Operations

SQL supports few Set operations which can be performed on the table data. These are used to

get meaningful results from data stored in the table, under different special conditions. Wel

cover 4 different types of SET operations, along with example:

 UNION

 UNION ALL

 INTERSECT

 MINUS

Union

SQL Union operation is used to combine the result of two or more SQL SELECT queries. In

the union operation, all the columns and its data type must be same in both the tables on

which UNION operation is being applied.

The union operation eliminates the duplicate rows from its resultset

Syntax

SELECT column_name FROM table1 UNION SELECT column_name FROM table2;

Union All

Union All operation is equal to the Union operation.

It returns the set without removing duplication and sorting the data.

Syntax:

SELECT column_name FROM table1 UNION ALL SELECT column_name FROM

table2;

Intersect

It combines two SELECT statement sand returns the common rows from both the SELECT

statements. Columns and its data types must be the same in both tables.

It has no duplicates and it arranges the data in ascending order by default

Syntax

SELECT column_name FROM table1 INTERSECT SELECT column_name FROM

table2;

Minus

It combines the result of two SELECT statements which display the rows which are present

in the first query but absent in the second query.

It has no duplicates and data arranged in ascending order by default.

Syntax:

SELECT column_name FROM table1 MINUS SELECT column_name FROM table2;

Aggregate functions in SQL

They are used to perform the calculations on multiple rows of a single column of a table.

It returns a single value like summarize the data.

 Count() - Count the number of rows in a database table, Count(*) returns total number

of records

 Sum() - calculate the sum of all selected columns; syntax is SUM([ALL|DISTINCT]

expression)

 Avg() - calculate the average value of the numeric type

 Min() - find the maximum value of a certain column

 Max() - find the minimum value of a certain column

GROUP BY Statement

The GROUP BY statement groups rows that have the same values into summary rows, like

"find the number of customers in each country".

It is often used with aggregate functions (COUNT, MAX, MIN, SUM, AVG) to group the

result-set by one or more columns.

GROUP BY Syntax

SELECT column_name(s) FROM table_name WHERE condition GROUP BY

column_name(s) ORDER BY column_name(s);

HAVING Clause:

We use HAVING clause to place conditions to decide which group will be the part of final

result-set. We can not use the aggregate functions like SUM(), COUNT() etc. with WHERE

clause. So we have to use HAVING clause

Syntax:

SELECT column1, function_name(column2) FROM table_name WHERE condition

GROUP BY column1, column2 HAVING condition ORDER BY column1, column2;

Nested Query

A nested query is a query that has another query embedded within it; the embedded query is

called a subquery. The query used to compute this subsidiary table is a subquery and appears

as part of the main query. A subquery typically appears within the WHERE clause of a query.

For example, find the names of sailors who have reserved boat 103

SELECT S.sname FROM Sailors S WHERE S.sid IN (SELECT R.sid FROM Reserves R

WHERE R.bid = 103

Views

Views in SQL are considered as a virtual table that contains both rows and columns. To

create the view, we select the all/ specific fields from one or more tables present in the

database. It can be used as abstraction layer between user and table and created by SELECT

statement.

A view can either have specific rows based on certain condition or all the rows of a table

Create a view by

Syntax: CREATE VIEW view_name AS SELECT column1, column2..... FROM

table_name WHERE condition;

Example -1 (for single table)

create view All-customer as (select branch-name, customer-name from Depositor, Account

where Depositor.account-number=account.account-number)

Example -2 (for multiple tables)

create view All-customer as (select branch-name, customer-name from Depositor, Account

where Depositor.account-number=account.account-number)

union

(select branch-name, customer-name from Borrower, Loan where Borrower.loan-number

= Loan.loan-number)

View can be deleted by

 DROP VIEW <view name>

View can be deleted by

CREATE OR REPLACE VIEW view_name AS SELECT column1, column2, ...

FROM table_name WHERE condition;

WITH CHECK OPTION is a CREATE VIEW statement option used to ensure that all

UPDATE and INSERTs satisfy the condition(s) in the view definition. If they do not satisfy

the condition, the UPDATE or INSERT returns an error.

CREATE VIEW CUSTOMERS_VIEW AS SELECT name, age

FROM CUSTOMERS WHERE age IS NOT NULL WITH CHECK OPTION;

It doesn’t allow null value in the age column

Advantages of views

 It help to reduce the complexity by allowing to create different views on the same

base table for different users.

 increases the security by excluding the sensitive information from the view

 it is Consistent, view is a unchanged image of the structure of the database

 If data is accessed and entered through a view, it meets the specified integrity

constraints

 Views take very little space to store the data

 View makes application and database to a certain extent independent

Disadvantages

 can't pass parameters to the SQL server views

 can't associate rules and defaults with views

 can't be created view on temporary tables

Types of view

Simple view

It is based on single

table and not contain

GROUP BY clause

or functions

Complex view

It is based on

multiple tables

which contain

GROUP BY clause

or functions

Inline view

It is based on sub

query in FROM

clause that creates

temporary table

Materialized view

It stores definition as

well as data. It

creates replicas of

data

Constraints

Constraints are restrictions like what values are allowed to be inserted in the relation, what

kind of modifications and deletions are allowed in the relation.

Constraints type

Domain constraints

Every domain must contain atomic values (smallest indivisible units). It means that

composite and multi-valued attributes are not allowed. We perform datatype check here,

which means when we assign a data type to a column we limit the values that it can contain.

Categories of Constraints

Constraints are applied in
the data model is
called Implicit
constraints

Constraints that are
directly applied in the
schemas of the data
model, by DDL (Data
Definition Language),
called as schema-based or
Explicit constraints

Constraints that cannot be
directly applied in the
schemas of the data
model, called as
Application based
or semantic constraints

For example, If we assign the datatype of attribute age as int, we cant give it values other then

int datatype.

Key constraints

These are called uniqueness constraints since it ensures that every tuple in the relation should

be unique. A relation can have multiple keys or candidate keys(minimal superkey), out of

which we choose one of the keys as primary key, we don’t have any restriction on choosing

the primary key out of candidate keys, but it is suggested to go with the candidate key with

less number of attributes. Null values are not allowed in the primary key, hence Not Null

constraint is also a part of key constraint.

Entity constraints

Entity Integrity constraints says that no primary key can take NULL value, since using primary

key we identify each tuple uniquely in a relation

Referential Integrity Constraints

The Referential integrity constraints is specified between two relations or tables and used to

maintain the consistency among the tuples in two relations. This constraint is enforced through

foreign key. When an attribute in the foreign key of relation R1 have the same domain(s) as

the primary key of relation R2, then the foreign key of R1 is said to reference or refer to the

primary key of relation R2.

The values of the foreign key in a tuple of relation R1 can either take the values of the primary

key for some tuple in relation R2, or can take NULL values, but can’t be empty.

