

SNS COLLEGE OF TECHNOLOGY

Re-accredited by NAAC with A+ grade, Accredited by NBA(CSE, IT, ECE, EEE & Mechanical) Approved by AICTE, New Delhi, Recognized by UGC, Affiliated to Anna University, Chenna

SQL Fundamentals

COURSE : 23CAT- Database Management System

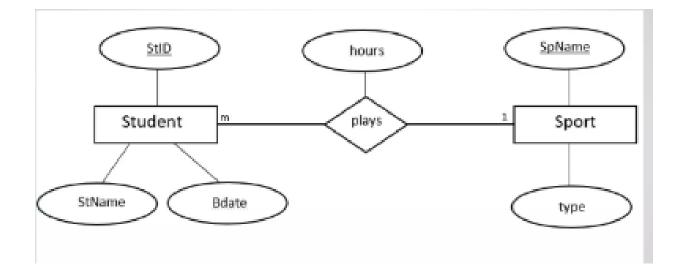
- **UNITI** : Introduction
- CLASS : I Semester / I MCA

SQL Basics /DBMS / Dr.S.Sundararajan/ MCA/ SNSCT

- Redundancy is at the root of several problems associated with relational schemas:
 - redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements
- Main refinement technique: decomposition (replacing ABCD with, say, AB and BCD, or ACD and ABD)
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

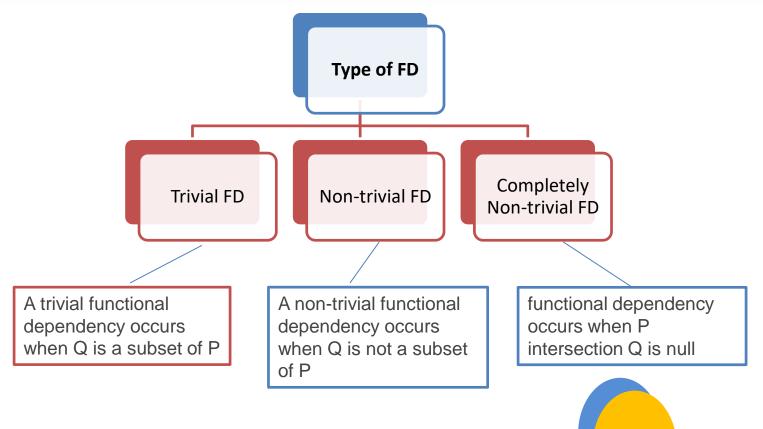
Replacing a relation with a collection of `smaller' relations

- Functional dependency in DBMS refers to the relationship between attributes in a database table
- The functional dependency is a relationship that exists between two attributes
- It typically exists between the primary key and non-key attribute within a table
 - $X \rightarrow Y$
- □ For example,
 - $Emp_Id \rightarrow Emp_Name$



- A Functional dependency is a constraint that describes relationship between attributes in the relation
- □ FDS and keys are used to define the normal form for relation
- **Example:**
 - If any two relations agree on the attributes
 - A₁, A₂, A₃...A_n
 - Then, they must also agree on the attributes
 - B₁, B₂, B₃...B_n
 - Formally:
 - $A_1, A_2, A_3...A_n \rightarrow B_1, B_2, B_3...B_n$

Functional Dependencies - Demonstration



- *****

Armstrong's Axioms property

- Armstrong's axioms are used to conclude functional dependencies on a relational database.
- The inference rule is a type of assertion. It can apply to a set of FD to derive other FD.
- Using the inference rule, we can derive additional functional dependency from the initial set

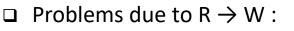
- Augmentation
 - PR -> QR, if P -> Q
- □ Reflexivity
 - P -> Q, if Q is a subset of P
- □ Transitivity
 - If P -> Q and Q -> R, then P -> R i.e. a transitive relation

🛛 Union

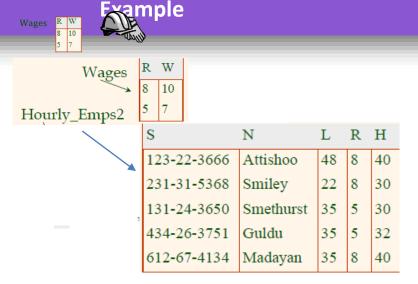
 $\bullet \quad \text{If } X \ \rightarrow \ Y \text{ and } X \ \rightarrow \ Z \text{ then } X \ \rightarrow \ YZ$

Decomposition

• If X \rightarrow YZ then X \rightarrow Y and X \rightarrow Z



□ Consider relation obtained from Hourly_Emps:


- Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
- Wages(rating, hourly wages)
- Notation: We will denote this relation schema by listing the attributes: SNLRWH
 - This is really the set of attributes {S,N,L,R,W,H}.
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)

□ Some FDs on Hourly_Emps:

- ssn is the key: S \rightarrow SNLRWH
- rating determines hrly_wages: $R \rightarrow W$

- <u>Update anomaly</u>: Can we change W in just
- the 1st tuple of SNLRWH?
- <u>Insertion anomaly:</u> What if we want to insert an
- employee and don't know the hourly wage for his rating?
- <u>Deletion anomaly</u>: If we delete all employees with rating 5, we lose the information about the
- wage for rating 5!

S	Ν	L	R	W	Η
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

- Given some FDs, we can usually infer additional FDs:
 - $ssn \rightarrow did$, $did \rightarrow lot$ implies $ssn \rightarrow lot$
- □ An FD f is *implied by* a set of FDs F if f holds whenever all FDs in F hold.
 - F+ = closure of F is the set of all FDs that are implied by F.
- □ Armstrong's Axioms (X, Y, Z are sets of attributes):
 - **Reflexivity:** If $X \subseteq Y$, then $Y \to X$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- □ These are *sound* and complete inference rules for FDs!

□ Couple of additional rules (that follow from AA):

- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- □ Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
 - C is the key: $C \rightarrow CSJDPQV$
 - Project purchases each part using single contract: JP \rightarrow C
 - Dept purchases at most one part from a supplier: $SD \rightarrow \mathbb{P} P$
- \square JP \rightarrow C, C \rightarrow CSJDPQV imply JP \rightarrow CSJDPQV
- $\square SD \rightarrow P \text{ implies } SDJ \rightarrow JP$
- \square SDJ \rightarrow JP, JP \rightarrow CSJDPQV imply SDJ \rightarrow CSJDPQV

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- □ Typically, we just want to check if a given FD X → Y is in the closure of a set of FDs
 F. An efficient check:
- □ Compute attribute closure of X (denoted X⁺) wrt F:
- $\hfill\square$ Set of all attributes A such that $X \to A$ is in F^+
- □ There is a linear time algorithm to compute this.
- □ Check if Y is in X⁺
- $\Box \quad D \odot es F = \{A \xrightarrow{s} B, B \rightarrow C, C D \rightarrow E \} \text{ imply } A \rightarrow E?$
- $\hfill\square$ i.e, is $A \to E$ in the closure F^+ ? Equivalently, is E in A^+ ?


- □ Schema refinement, Whether any refinement is needed?
- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- □ Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Architectural Design Challenges

SQL Basics /DBMS / Dr.S.Sundararajan/ MCA/ SNSCT