

SNS COLLEGE OF TECHNOLOGY **AN AUTONOMOUS INSTITUTION** Approved by AICTE New Delhi & Affiliated to Anna University Chennai Accredited by NBA & Accredited by NAAC with A⁺⁺ Grade Recognized by UGC

DEPARTMENT OF AGRICULTURAL ENGINEERING

COURSE CODE & NAME: 19AGT301 & HEAT POWER ENGINEERING

III YEAR / V SEMESTER

UNIT : V BOILERS

Topic : Water Tube Boilers

WATER TUBE BOILERS

BABCOCK & WILCOX BOILERS

- It consist of welded steel high pressure drum mounted at the top.
- Drum is connected with uptake header and down take header.
- Water tubes connected to the headers are inclined at 15⁰ to the horizontal.
- Water tubes are straight and 10cm diameter expended into the bored holes of header.
- Serpentine from of header provides complete heating surface to the flue
- gases.
- Furnace is arranged below the uptake header.

BABCOCK & WILCOX BOILERS (Constructional features)

BABCOCK & WILCOX BOILERS (Constructional features)

- Unit is provided with chain grate stroker. Speed of chain is adjusted with respect to the complete combustion of coal.
 - Deflectors to flue gases are provided in the form of baffles.
 - Mud Box: To water.
- Super heater heater.
- Vents provided: safety valve, pressure gauge, water level indicator, fusible plug and feed check valve.
 - Water tube and drum assembly hung on steel girder frame called slings.

- Mud Box: To collect the sedimentation in
- Super heater tubes: To enhance the super

BABCOCK & WILCOX BOILERS (Capacity and utility)

Evaporative capacity ranges from 20000 to 40000 kg/hr

□Operative pressure ranges from 11.5 to 17.5 bar. Steam formed from such boilers are primarily used to run steam turbines and generate electric power.

BABCOCK & WILCOX BOILERS (Salient Aspects)

- Capability to cope with high peak loads which are generally needed in thermal power stations. \checkmark Inspection of the boiler can be carried even when the boiler is in operation. Draught loss is minimum.
- Replacement of defective tubes can be made easily. \checkmark

STIRLING BENT- TUBE BOILER

- 7. Baffles 9. Fire grate
- 8. Superheater

STIRLING BENT- TUBE BOILER

- Drums are interlinked to each other with bent water tubes for the following reasons: To allow free expansion and contraction of the
- tubes.
- Tube replacement become easier. b)
 - Flexibility in design with regards to location of drums.
- d) radial direction.

1.

a)

c)

- 2. Mud drum is usually 10 to 25cm larger in diameter than a steam drum.
- 3. Entire unit is independent of brick work.
- 4. High steam pressures (60bar and 450°c).
- 5. Evaporation capacity up to 50000kg/hr.

Tubes can enter the drums in approximately

COMPARISION Between WATER TUBE & FIRE TUBE BOILERS

WATER TUBE	
Water passes through water tubes.	Hot (
Water content: steam capacity low (high speed)	Wate high
Complexity in design requires quick examination by skilled hands.	Simp grea cost.
Operating pressure up to 200 bar.	Pres 24.5
Evaporation rate ranges from 20,000 to 50,000kg/hr.	Evap
Increased heating surface area.	Low
Low water to steam ratio	Larg
Bigger in size, suitable for large power plants	Sma powe
Transportation and installation is easy due to handling of dismentaled parts	Tran diffic
Externally fired boilers, furnace size can be varied.	Inter size
Requires more floor area	Requ

FIRE TUBE

gases passes through flues.

er content: Steam capacity (Slow speed)

ple & rigid construction hence ater reliability & low operating

- ssure ranges from 17.5 bar to bar
- poration rate 900kg/hr.
- heating surface area.
- ge water to steam ratio
- aller in size, used only for small ver plants
- nsportation and installation is cult due to large size of shell.
- rnally fired boilers, furnace can not be varied.
- juires less floor area

ESSENTIALS OF A GOOD BOILER

Heat generation capability should be at: 1.

- **Required** pressure a)
 - **Required quality** b)
 - Fast speed c)
- Minimum fuel consumption d)

2. Economic :

- Low initial cost a) Low installation cost
- b)
- Low operating cost c)
- Low maintenance cost d)

3. Construction:

Light in weight a)

- Less amount of brick work b)
 - **c**) Occupy small floor area

4.Quick starting.

5.Capable to meet fluctuating demand of steam supply.

6. Easy availability of spare parts

