
SNS COLLEGE OF TECHNOLOGY
An Autonomous Institution

Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECT303-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

III YEAR/ V SEMESTER

UNIT 5– DEEP LEARNING

5.2 RECURRENT NEURAL NETWORKS

1

11/18/2023 RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT 1/18

OUTLINE

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT

•Recap

•Introduction—Why RNN?

•Tensor Flow code –declaration: initialization , execution

•RNN Architecture -3 D-Batch size , No. of :Steps , Features

•Example

•Data representation

•Rolled version of RNN

•Activity

•Unrolled version of RNN

•Processing : a batch , single line of input

•Execution process

•Two lines of code

•Conclusion-Summary

2

11/18/2023 2/18

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

3

3/18

•Researchers came up with neural networks to model the behaviour of a human brain.

•The reason for this statement is that feed forward vanilla neural networks cannot remember

the things it learns

•Each iteration you train the network it starts fresh, it doesn’t remember what it saw in the

previous iteration when you are processing the current set of data.

• This is a big disadvantage when identifying correlations and data patterns.

•This is where Recurrent Neural Networks (RNN)came into the picture.

• RNNs have a very unique architecture that helps them to model memory units (hidden

state) that enable them to persist data, thus being able to model short term

dependencies.

• Due to this reason, RNNs are extensively used in time-series forecasting to identify data

correlations and patterns.

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

4

3/18

Two lines of TensorFlow code that are responsible for the declaration of the

RNN and initiating the execution is run.

1. cell = tf.contrib.rnn.BasicRNNCell(rnn_size,activation=tf.nn.tanh) val1,

2. state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32)

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

5

3/18

RNN Architecture

RNN input needs to have 3 dimensions.

1. Batch size,

2. Number of steps

3. Number of features.

 The number of steps depicts the number of time steps/segments you will be feeding in one line of

input of a batch of data that will be fed into the RNN.

The RNN unit in TensorFlow is called the “RNN cell”.

Stackoverflow that inquire if “RNN cell” refers to one single cell or the whole layer.

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

6

3/18

•Connections in RNNs are recurrent, thus following a “feeding to itself” approach.

•RNN layer is comprised of a single rolled RNN cell that unrolls according to the “number of steps” value (number of

time steps/segments) you provide.

•The main speciality in RNNs is the ability to model short term dependencies.

• This is due to the hidden state in the RNN.

• It retains information from one time step to another flowing through the unrolled RNN units.

• Each unrolled RNN unit has a hidden state.

•The current time steps hidden state is calculated using information of the previous time step’s hidden state and the

current input.

•This process helps to retain information on what the model saw in the previous time step when processing the

current time steps information.

•All the connections in RNN have weights and biases.

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

7

3/18

EXAMPLE:

let’s break down the execution process with an example.

 Say your batch size is 6,

 RNN size is 7,

number of time steps/segments you would include in one input line is 5

and the number of features in one time step is 3.

If this is the case, your input tensor (matrix) shape for one batch would look something like
this:
Tensor shape of one batch = (6,5,3)

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

8

3/18

The data inside a batch would look something like this: Data representation inside a batch of data

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

9

3/18

The data segmentation method used here is called the sliding window approach and is mostly

used when doing time series analysis.

To data pre-processing process here.

When first feeding the data into the RNN.

It will have a rolled architecture as shown below:

Rolled version of RNN

ACTIVITY

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT

10

11/18/2023 6/18

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

11

3/18

But when the RNN starts to process the data it will unroll and produce outputs as shown
below:

Unrolled version of RNN

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

12

3/18

Processing a batch:

When you feed a batch of data into the RNN cell it starts the processing from the 1st line of input.

 Likewise, the RNN cell will sequentially process all the input lines in the batch of data that was fed

and give one output at the end which includes all the outputs of all the input lines.

Processing a single line of input:

In order to process a line of input, the RNN cell unrolls “number of steps” times.

 Ref. previous figure

Since we defined “number of steps” as 5, the RNN cell has been unrolled 5 times.

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

13

3/18

The execution process is as follows:

First, the initial hidden state (S), which is typically a vector of zeros and the hidden state weight

(h) is multiplied and then the hidden state bias is added to the result.

 In the meantime, the input at the time step t ([1,2,3]) and the input weight (i) is multiplied and

the input bias is added to that result.

To obtain the hidden state at time step t by sending the addition of the above two results

through an activation function, typically tanh (f).

Hidden state calculation of time step t

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

14

3/18

To obtain the output at time step t,

 the hidden state (S) at time step t is multiplied by the output weight (O) at time step t and then

the output bias is added to the result.

Output calculation of time step t

To calculate the hidden state at time step t+1, the hidden state (S) at time step t is multiplied

by the hidden state weight (h) and the hidden state bias is added to the result.

Then as mentioned before the input at time step t+1 ([4,5,6]) will get multiplied by the input

weight (i) and the input bias will be added to the result.

These two results will then be sent through an activation function, typically tanh (f).

Hidden state calculation of time step
t+1

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

15

3/18

To obtain the output at time step t+1,

the hidden state (S) at time step t+1 is multiplied by the output weight (O) at time step t+1

and then the output bias is added to the result.

As you can see, when producing the output of time step t+1 it not only uses the input data of

time step t+1 but also uses information of data in time step t via the hidden state at time step

t+1.

Output calculation of time step t+1

This process will repeat for all the time steps

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

16

3/18

•After processing all time steps in one line of input in the batch,

•we will have 5 outputs of shape (1,7).

•So when all these outputs are concatenated together. the shape becomes (1,5,7).

•When all the input lines of the batch are done processing we get 6 outputs of size (1,5,7).

•Thus, the final output of the whole batch would be (6,5,7).

Note:

 All the hidden state weights, output weights and input weights have the same value

throughout all the connections in a RNN.

RECURRENT NEURAL NETWORKS

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT
11/18/2023

17

3/18

1. The 1st line basically defines the activation function and the RNN size of the RNN cell that we

want to create.

2. The 2nd line executes the processing procedure of the input data by feeding it into the

RNN.

The processing will happen according to what we discussed earlier.

Finally, the output (value with shape (6,5,7)) of that batch will be assigned to the “val1” variable.

The final value of the hidden state will be assigned to the “state” variable.

Coming back to the 2 lines of code we stated earlier:

1. cell = tf.contrib.rnn.BasicRNNCell(rnn_size,activation=tf.nn.tanh) val1,

2. state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32)

ASSESSMENT
SUMMARY & THANK YOU

RNN/19ECT303-AIML/Jagadesh M/ECE/SNSCT

18

11/18/2023

17/18

we discussed the data manipulation and

representation process inside of a RNN in Tensor Flow

	Slide 1
	Slide 2: OUTLINE
	Slide 3: RECURRENT NEURAL NETWORKS
	Slide 4: RECURRENT NEURAL NETWORKS
	Slide 5: RECURRENT NEURAL NETWORKS
	Slide 6: RECURRENT NEURAL NETWORKS
	Slide 7: RECURRENT NEURAL NETWORKS
	Slide 8: RECURRENT NEURAL NETWORKS
	Slide 9: RECURRENT NEURAL NETWORKS
	Slide 10
	Slide 11: RECURRENT NEURAL NETWORKS
	Slide 12: RECURRENT NEURAL NETWORKS
	Slide 13: RECURRENT NEURAL NETWORKS
	Slide 14: RECURRENT NEURAL NETWORKS
	Slide 15: RECURRENT NEURAL NETWORKS
	Slide 16: RECURRENT NEURAL NETWORKS
	Slide 17: RECURRENT NEURAL NETWORKS
	Slide 18: ASSESSMENT SUMMARY & THANK YOU

