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Recursive Neural Networks

• They are yet another generalization of recurrent networks 

with a different kind of computational graph

• It is structured as a deep tree, rather than the chain 

structure of RNNs

• The typical computational graph for a recursive network is

shown next
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Computational graph of a Recursive Network

• It generalizes a recurrent

network from a chain to a tree

• A variable sequence x(1),x(2),,x(t)

can be mapped to a fixed size

representation (the output o), with

a fixed set of parameters (the

weight matrices U,V,W)

• Figure illustrates supervised

learning case in which target y is

provided that is associated with

the whole sequence
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Advantage of Recursive over Recurrent Nets

• For a sequence of the same length τ, the depth (measured as

the no. of compositions of nonlinear operations) can be reduced

from τ to O(log τ), which might help deal with long-term

dependencies

• An open question is how best to structure the tree
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Need for Recursive nets in NLP

• Deep learning based methods learn low-dimensional, real valued vectors for 

word tokens, mostly from a large data corpus, successfully capturing syntactic and 

semantic aspects of text

• For tasks where the inputs are larger text units, 

e.g., phrases, sentences or documents, a compositional model  is first needed to 

aggregate tokens into a vector with fixed dimensionality that can be used for other 

NLP tasks

• Models for achieving this fall into two categories: recurrent models and recursive 

models
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Recurrent Model for NLP

• Recurrent models deal successfully with time series data

• The recurrent models generally consider no linguistic structure

aside from the word order

• They were applied early on to NLP by modeling a sentence astokens processed sequentially and at 

each step combining the current token with previously built embeddings

• Recurrent models can be extended to bidirectional ones from both left to right and right to left

• These models consider no linguistic structure aside from word

order
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Recursive Models for NLP

• Recursive neural models (also referred to as tree models) by contrast are structured by 

syntactic parse trees

• Instead of considering tokens sequentially, recursive models combine neighbors based on the 

recursive structure of parse trees, starting from the leaves and proceeding recursively in a

bottom-up fashion until the root of the parse tree is reached

• Ex: for the phrase the food is delicious, following the operation sequence

((the food) (is delicious)) rather than the sequential order (((the food) is)

delicious)
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Advantage of Recursive Model for NLP

• They have the potential of capturing long-distance

dependencies

• Two tokens may be structurally closer to each other even

though they are far away in word sequence

• Ex: a verb and its corresponding direct object can be far away

in terms of tokens if many adjectives lie inbetween, but they are

adjacent in the parse tree

• However parsing is slow and domain dependent

• See performance comparison with LSTM on four NLP tasks at

https://nlp.stanford.edu/pubemnlp2015_2_jiwei.pdf
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Structure of the Tree

• One option is to have a tree structure that does not depend on the data, such as a balanced 

binary tree

• In some application domains, external methods can suggest the appropriate tree structure

• Ex: when processing natural language sentences, the tree structure for the recursive network 

can be fixed to the structure of the parse tree of the sentence provided by a natural language 

parse

• Ideally, one would like the learner itself to discover and infer the tree structure that is 

appropriate for any given input
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Variants of Recursive Net idea

• Associate data with a tree structure and associate inputs and

targets with individual nodes of the tree

• The computation performed for each node does not have to be the

artificial neuron computation (affine transformation of all inputs followed

by a monotone nonlinearity)

• Can use a tensor operations of bilinear forms

• Previously found useful to model linear relationships between

concepts when the concepts are represented by continuous vectors
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Recursive Neural Networks

• Recursive neural networks are also called Tree Nets

• Useful for learning tree-like structures

• They are highly useful for parsing natural scenes and 

language
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Unrolling Recurrent and Tree Nets

• In RNNs, at each time step the network takes as input its previous state s(t-1) and its current 

input x(t) and produces an output y(t) and a new hidden state s(t).

• TreeNets, on the other hand, don’t have a simple linearstructure like that.

• With RNNs, you can ‘unroll’ the net and think of it as a large feedforward net with inputs x(0), 

x(1), …, x(T), initial state s(0), and outputs y(0),y(1),…,y(T), with T varying depending on the

input data stream, and the weights in each of the cells tied with each other.

• You can also think of TreeNets by unrolling them – the weights in each branch node are tied 

with each other, and the weights in each leaf node are tied with each other.
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Advantage of Recursive Nets

• The advantage of Recursive Nets is that they can be very powerful in learning hierarchical, tree-

like structure.

• The disadvantages are, firstly, that the tree structure of every

input sample must be known at training time.
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