UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines

Velocity triangles

It is the component which is responsible for "actual work done" across blades.
The jet of fluid that strikes the turbine blades, has its two components:

1. Whirl component
2. Axial thrust

The whirl velocity is the tangential component of absolute velocity at the blade inlet and outlet. This component of velocity is responsible for the whirling or rotating of the turbine rotor.

Otherwise

In turbomachinery, a velocity triangle or a velocity diagram is a triangle representing the various components of velocities of the working fluid in a turbomachine.

Velocity triangles may be drawn for both the inlet and outlet sections of any turbomachine.
The vector nature of velocity is utilized in the triangles, and the most basic form of a velocity triangle consists of the tangential velocity, the absolute velocity and the relative velocity of the fluid making up three sides of the triangle.

A general velocity triangle consists of the following vectors:
V : Absolute Velocity of The Fluid.
U : Blade Linear Velocity.
V_{r} : Relative Velocity of The Fluid After Contact With Rotor.
V_{w} : Tangential Component of V (Absolute Velocity), Called Whirl Velocity.
(Axial Component In Case of Axial Machines, Radial Component In Case of Radial Machines).

The Following Angles Are Encountered During The Analysis:

A: Angle Made by V With The Plane of The Machine (Usually The Nozzle Angle or The Guide Blade Angle).

B: Angle of The Rotor Blade. Absolute Angle

[^0]
SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35 DEPARTMENT OF MECHANICAL ENGINEERING

Fluid Mechanics and Machinery -

UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35

DEPARTMENT OF MECHANICAL ENGINEERING
Fluid Mechanics and Machinery -

UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines

Vu2 $=$ Whirl component of absolute velocity at outlet;
Vf2 $=$ Flow component of absolute velocity at outlet ; Inlet and Outlet Velocity Triangles
Referring to velocity triangles
1 - Inlet, 2 - outlet
$\mathrm{V} 1=$ Absolute velocity of the fluid at inlet (before entering the rotor vanes)
$\mathrm{Vr} 1=$ Relative velocity of the fluid at rotor inlet
Vu1 $=$ Tangential component of absolute velocity

OR

Whirl component of velocity at inlet

Vru2 $=$ Whirl component of relative velocity at outlet
$\mathrm{U} 2=$ Linear rotor velocity at outlet
$1=$ Fluid or jet angle at outlet (To the direction of wheel rotation)
$1=$ Vane (blade) angle at outlet (To the direction of wheel rotation)

Vf1 = Flow component of absolute velocity at inlet

Vru1 $=$ Whirl component of relative velocity at inlet

U1 = Linear rotor vane velocity at inlet

1= Absolute jet angle at inlet
$1=$ Vane (blade) angle at inlet

Referring to outlet velocity triangle

Fluid Mechanics and Machinery -

UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines

The above figure shows the velocity triangles at entry and exit of a general TM. The angular velocity of the rotor is $\dot{\omega} \mathrm{rad} / \mathrm{sec}$ and is given by

$$
\omega=\frac{2 \pi N}{60}---1
$$

The peripheral velocity of the blade at the entry and exit corresponding to the diameter D_{1} and D_{2} are given by

$$
\begin{aligned}
& u_{1}=\frac{\pi D_{1} N}{60}---2 \\
& u_{2}=\frac{\pi D_{2} N}{60}---3
\end{aligned}
$$

The three velocity vector V, u and V_{r} at the section are related by a simple vector equation

The above figure shows the velocity triangles at entry and exit of a general TM. The angular velocity of the rotor is $\dot{\omega} \mathrm{rad} / \mathrm{sec}$ and is given by

$$
\omega=\frac{2 \pi N}{60}---1
$$

The peripheral velocity of the blade at the entry and exit corresponding to the diameter D_{1} and D_{2} are given by

$$
\begin{aligned}
& u_{1}=\frac{\pi D_{1} N}{60}---2 \\
& u_{2}=\frac{\pi D_{2} N}{60}---3
\end{aligned}
$$

The three velocity vector V, u and V_{r} at the section are related by a simple vector equation

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35 DEPARTMENT OF MECHANICAL ENGINEERING

Fluid Mechanics and Machinery -

UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines

$$
V=u+V_{r}---4
$$

Considering unit mass of the fluid entering and leaving in unit time we have
Angular momentum of the inlet $=V_{u 1} \times R_{1}----5$
Similarly
Angular momentum of the outlet $=V_{u 2} \times R_{2}----6$
Torque produced $=$ rate of change of Angular momentum

$$
T=\{\text { Angular momentum at inlet }\}-\{\text { Angular momentum at outlet }\}
$$

$$
T=\left(V_{u 1} R_{1}\right)-\left(V_{u 2} R_{2}\right)---7
$$

Therefore the work done is given by

$$
\begin{gathered}
W=\text { Torque } \times \text { angular velocity of the rotor } \\
W=\left(V_{u 1} R_{1}-V_{u 2} R_{2}\right) \omega \\
=\left[V_{u 1}\left(\omega R_{1}\right)-V_{u 2}\left(\omega R_{2}\right)\right] \\
=\left[V_{u 1}\left(\frac{2 \pi N}{60} R_{1}\right)-V_{u 2}\left(\frac{2 \pi N}{60} R_{2}\right)\right]
\end{gathered}
$$

Fluid Mechanics and Machinery -

UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines

$$
\begin{aligned}
W & =\left[\frac{V_{u 1} \pi D_{1} N}{60}-\frac{V_{u 2} \pi D_{2} N}{60}\right] \\
W & =\left[V_{u 1} u_{1}-V_{u 2} u_{2}\right]---8
\end{aligned}
$$

Fluid Mechanics and Machinery -

UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines
From inlet velocity triangle
$V_{f 1}{ }^{2}=V_{1}{ }^{2}-V_{u 1}{ }^{2}$
$V_{\mathrm{t} 1}{ }^{2}=V_{\mathrm{ft}}{ }^{2}+V_{\mathrm{ru} 1}{ }^{2}$
$V_{r 1}{ }^{2}=V_{1}{ }^{2}-V_{u 1}{ }^{2}+\left(V_{u 1}-U_{1}\right)^{2}$

$$
=V_{1}{ }^{2}-V_{\nsim 1}{ }^{2}+V_{\nsim 1}{ }^{2}-2 V_{u 1} U_{1}+U_{1}{ }^{2}
$$

Rearranging
$2 \mathrm{~V}_{\mathrm{u} 1} \mathrm{U}_{1}=\mathrm{V}_{1}{ }^{2}+\mathrm{U}_{1}{ }^{2}-\mathrm{V}_{\mathrm{r} 1}{ }^{2}$
$\mathrm{V}_{\mathrm{ut}} \mathrm{U}_{1}=\frac{\mathrm{V}_{1}{ }^{2}+\mathrm{U}_{1}{ }^{2}-\mathrm{V}_{\mathrm{rt}}{ }^{2}}{2} \mathrm{~m}^{2} / \mathrm{s}^{2}$ OR Nm/kg... (1)

From outlet velocity triangle
$V_{\mathrm{r} 2}{ }^{2}=\mathrm{V}_{\mathrm{ru} 2}{ }^{2}+\mathrm{V}_{\mathrm{t} 2}{ }^{2}$

$$
=\left(\mathrm{U}_{2}-\mathrm{V}_{\mathrm{u} 2}\right)^{2}+\left(\mathrm{V}_{2}{ }^{2}-\mathrm{V}_{\mathrm{u} 2}{ }^{2}\right)
$$

Taking $\mathrm{V}_{\mathrm{ru} 2}=\left(\mathrm{U}_{2}-\mathrm{V}_{\mathrm{u} 2}\right)$ in magnitude only and not in directions $\mathrm{V}_{\mathrm{t} 2}{ }^{2}=\mathrm{U}_{2}{ }^{2}-2 \mathrm{~V}_{\mathrm{U2}} \mathrm{U}_{2}+\mathrm{V} / \mathrm{R2}^{2}+\mathrm{V}_{2}{ }^{2}-\mathrm{V} / \mathrm{UL}^{2}$
$\therefore \mathrm{V}_{\mathrm{u} 2} \mathrm{U}_{2}=\frac{\mathrm{V}_{2}{ }^{2}+\mathrm{U}_{2}{ }^{2}-\mathrm{V}_{12}{ }^{2}}{2} \mathrm{~m}^{2} / \mathrm{s}^{2}$ OR Nm/kg... (2)

CASE 1:

Taking direction of rotation as positive
$\mathrm{V}_{\mathrm{u} 1}+\mathrm{Ve}$ and $\mathrm{V}_{\mathrm{u} 2}$ also +ve.
Work done/kg or Energy transfer in Turbine
Work done/kg

$$
=\left(\mathrm{V}_{\mathrm{u} 1} \mathrm{U}_{1}-\mathrm{V}_{\mathrm{u} 2} \mathrm{U}_{2}\right)
$$

$$
\begin{aligned}
\text { Energy Transfer }(\mathrm{E}) & =\left(\frac{\mathrm{V}_{1}{ }^{2}+\mathrm{U}_{1}^{2}-\mathrm{V}_{\mathrm{r} 1}^{2}}{2}\right)-\left(\frac{\mathrm{V}_{2}^{2}+\mathrm{U}_{2}^{2}-\mathrm{V}_{\mathrm{r} 2}{ }^{2}}{2}\right] \\
& =\left(\frac{\mathrm{V}_{1}{ }^{2}-\mathrm{V}_{2}^{2}}{2}\right)+\left(\frac{\mathrm{U}_{1}^{2}-\mathrm{U}_{2}^{2}}{2}\right)+\left(\frac{\mathrm{V}_{\mathrm{r} 2}{ }^{2}-\mathrm{V}_{\mathrm{r} 1}{ }^{2}}{2}\right)
\end{aligned}
$$

Fluid Mechanics and Machinery -

UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines

Components of energy transfer

1. $\frac{V_{1}^{2}-V_{2}^{2}}{2}$ is change in absolute kinetic energy in $\mathrm{m}^{2} / \mathrm{s}^{2}$ or $\mathrm{Nm} / \mathrm{kg}$
2. $\frac{\boldsymbol{U}_{1}^{2}-\boldsymbol{U}_{2}^{2}}{2}$ is change in centrifugal energy of fluid felt as static pressure change in rotor blades in $\mathrm{m}^{2} / \mathrm{s}^{2}$ or $\mathrm{Nm} / \mathrm{kg}$
3. $\frac{\boldsymbol{V}_{r 2}^{2}-\boldsymbol{V}_{r 1}^{2}}{2}$ Is change in relative velocity energy felt as static pressure change in rotor blades in $\mathrm{m} 2 / \mathrm{s} 2$ or $\mathrm{Nm} / \mathrm{kg}$

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35 DEPARTMENT OF MECHANICAL ENGINEERING

Fluid Mechanics and Machinery -
UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines
$\xrightarrow{2}+\mathrm{P}_{2}$

1. Al potontint energies are Converted into $K E$ by Nozzle before entering to lusbrie runner
2. Flow regulation is pasenble withonk stases
3. Flow is regulated by means of a needle value fitted inti the nozzle
4. Nates may be allowed to enter a past or whole of the wheel circumference
5. Wheel does not rum fall and dir has free access to the bercicets

6 Unit is installed above the Cailuave
7. Blades are only in action when they are in front of Nozzle

Reaction
only a portion of the fid enessy is tromfersed into KE before the flusd enters te lowtsme.

Flow regulation is prosible wist loss

Flow is regulated by mean of a guide-vane assembly
water is admitted over the circumference of the wheel
water Completely fills the vane passages througtront the operation of turbine.
unit is sept entirely submerged in water below couture

Blades ese in action at all the tiring.

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35 DEPARTMENT OF MECHANICAL ENGINEERING

Fluid Mechanics and Machinery -
UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines
Tangentwil flow Trusbric : of te sumer.

Ex. Pelion wheel.
Racial flow then time:
In a rending flow furbinc, water flows along the radial diction and mainly in the plane normal to the axis of rofolion, is it posses through the sumer.
Ft may Ee either imard radiant flow lippe or outward radial flow lippe.
Inward radial flow:
water entices at the enter Coscunferenco and flows radially innards bo the centre of the runner
Ex: old francis tinberne, thomson turbine. outward radial flow water enters at the Contra and flows radially outwards towards the center periphery of th rummer
Ex: Fourneyron tinbine.
Mixed
Lew Flow tonberis
In a mixed flow tinbirie, the water enters tue blades radially and comes ont axially and parallel to the limbire shits

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35 DEPARTMENT OF MECHANICAL ENGINEERING

Fluid Mechanics and Machinery -
UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines E_{x} : Modern frames turbine
In aus subset point of new, the following turbines are impeortemt and will be disensed one by one.

1. peltion whee 2. Francis tmberie 3. Knplen turban

Axial Flow Turbine:
water flows parallel to the axis of the Uviluine shaft
Eg. Dkuptan Turbine, 2) propeller Tumbril.
V - veloing of Jet (absolute)
v_{w}-will veboity
v_{r} - Relative velocity (Chen these is mo friction)
U - vane veloitty (Runner)
ϕ - Angle of blade at outlet ir) Vane angle outlet
β - Angle made by $V_{r 2}$ with the direction of motion
V_{f} - velocity of tow
V_{f} - velocity of flow
d - sin of Jet
D- sin of whee
D^{*} - oi a of penstock

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35

 DEPARTMENT OF MECHANICAL ENGINEERINGFluid Mechanics and Machinery -
UNIT IV TURBINES Topic - Velocity triangles - Axial, radial and mixed flow turbines

Question and answers: -

Draw velocity triangles at inlet and outlet of typical Francis turbine vane.
Ans. There are three types of velocity triangles for. inlet and outlet in Francis turbine. Triangles are made for slow runner, medium runner and fast runner.

Fig. Slow runner

Fig. Medium Runner

Fig. Fast Runner

[^0]: $V_{f:}$: Flow Velocity

