

(An Autonomous Institution) Coimbatore -35.

19BMT202 Biomedical Sensors and Measurement

Unit – 4 Measurement of Non-Electrical Parameters

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore -35.

UNIT IV Measurement of Non-Electrical Parameters

Invasive and non-invasive measurement of blood pressure

Invasive (direct) blood pressure measurement

• Measures blood pressure directly by connecting the bloodstream to a pressure transducer, usually by a column of incompressible fluid (eg. saline)

• Sources of error include:

- Transducer positioning ("levelling") and calibration
- Damping and resonance, and all the things that affect it, for example length of water-filled tubing, air bubbles, clots, and the position of the catheter in the vascular tree

Non-invasive (indirect) blood pressure measurement

 Relies on a known counter pressure to change the characteristics of downstream blood flow, which can be detected and related to the pressures in the circulation

• Methods of indirect BP measurement:

- Oscillometric (measures MAP, estimates SBP and DBP)
- Auscultatory (measures SBP and DBP, estimates MAP)
- Pulse palpation (measures SBP only)
- Flush (measures SBP only)
- Ultrasound (measures SBP and DBP, estimates MAP)

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution)

Coimbatore -35.

Oscillometric measurement:

- The arterial pulse changes the volume of a limb
- o This change in volume produces a change in pressure in an encircling cuff
- The cuff is deflated gradually, and the maximum amplitude of the pressure change is recorded as the MAP
- SBP and DBP are then calculated from the MAP using various algorithms

Auscultatory measurement:

- A cuff is inflated to obliterate distal blood flow, and the distal artery is auscultated
- As the cuff is deflated, blood released into the distal limb makes characteristic sounds, which can be related to the pulse pressure range
- By this means, SBP and DBP can be measured, and MAP is calculated from these values

• Sources of error of NIBP methods

- Incorrect technique (eg. wrong cuff size, deflation speed too fast)
- Interference with measurement (eg. patient movement, AF)
- Unavoidable errors of calculation (i.e. use of equations and constants to calculate derived variables from measured values)

• Limitations of NIBP methods

- Oscillometric measurement overestimates BP in hypotension and underestimates BP in hypertension
- Auscultatory measurement underestimates BP in hypotension, and may be unable to detect BP in low cardiac output states
- Reliability of these methods rests on the correct matching of cuff width and length to the patient's arm size.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore -35.

Blood Pressure Measurement: Invasive vs Non-Invasive Methods		
Domain	Invasive (arterial catheter)	Non-invasive (cuff manometer)
Equipment	 Arterial catheter Incompressible tubing Pressure transducer Monitoring Counter pressure fluid 	 Inflatable cuff Cuff manometer Release valve
Physical principles and method	 Pressure wave transmitted via fluid column Pressure changes are converted to resistance changes in a Wheatstone bridge transducer The resulting change in current is displayed as a graph By calibrating the sensor against a known range of pressures, this can be converted to a graph of pressure over time 	 Counter pressure is applied to a perfused limb Pulse from the limb arterial supply is detected (eg. by auscultation) Increasing counter pressure is applied to the limb This counter pressure decreases the amplitude of the detected pulse until the pulsations are no longer detected The counter pressure at which pulse is eliminated is recorded as the systolic pressure; Maximum counter pressure at which there is no pulse amplitude change is recorded as the diastolic pressure
Practical advantages	 Thought to be the "gold standard" Allows continuous monitoring Gives access to the bloodstream for sampling Waveform is a source of information 	 No invasive procedures required Cheap and reusable Requires minimal training Requires no monitoring equipment or electronics Minimal moving parts, robust setup, durable Does not require regular recalibration
Practical disadvantages	 Requires arterial puncture Non-reusable kit Monitoring equipment is required for display Requires regular re-zeroing and re-leveling Training is required for staff Transducers can drift Relatively expensive parts 	 Less reliable measurements at pressure extremes Continuous monitoring is not possible Can become painful if set to repeat too frequently Can give rise to pressure areas Maximum accuracy requires manual operation (i.e. automatic modes are unreliable in unstable patients)