

SNS COLLEGE OF TECHNOLOGY AN AUTONOMOUS INSTITUTION

Approved by AICTE New Delhi & Affiliated to Anna University Chennai Accredited by NBA & Accredited by NAAC with A⁺ Grade Recognized by UGC

DEPARTMENT OF FOOD TECHNOLOGY

COURSE CODE & NAME: 19FTT301 & Refrigeration & Cold Chain Management

III YEAR / V SEMESTER

UNIT: IV LOW TEMPERATURE STORAGE SYSTEMS

TOPIC 5 : Cryogenics

DEFINITION

The word *cryogenics* literally means "the production of icy cold"; however the term is used today as a <u>synonym</u> for the low-temperature state.

The cryogenic temperature range has been defined as from -150 °C (-238 °F) to absolute zero (-273 °C or -460 °F), the temperature at which molecular motion comes as close as theoretically possible to ceasing completely. Cryogenic cooling uses refrigerants, such as liquid nitrogen or solid carbon dioxide

Largest Cryogenic System

- LHC = Large Hadron Collider
- One of the coldest places on the Earth
- Main magnets operate at 1.9 K (-271.3°C), colder than outer space which is at 2.7 K (-270.5°C)
- Requires 120 tones (120000 kg) of superfluid helium to keep magnets at 1.9 K

PROCESS

- Gases compressed and heated in compressor.
- Heat of gases in removed in condenser and used in compressor.
- Refrigerant in expansion valve for cooling below condensation temperature.
- Now cools the objects to cryogenic temperature and reheating of gases occurs.

PROPERTIES OF CRYOGENIC FLIUDS

S.NO.	NAME	BOILING POINT (K)	LIQUID DENSITY (kg/m³)	THERMAL CODUCTITVITY (mWm ⁻¹ K ⁻¹)
1	HYDROGEN	20.4	71	100
2	NITROGEN	77.3	809	135
3	HELIUM	4.22	125	18.7
4	OXYGEN	90.2	1141	152
5	CARBON- MONOXIDE	81.7	792	
6	NEONE	27	1205	113

Why LHC required low temperatures?

☐ Uses powerful electromagnets to keep its high-energy particles on a circular
track.
\Box To provide the strong fields needed to grip its high energy particles, the
LHC electromagnets should be
superconductors.
☐ In this way, the LHC magnets can be powered to very high fields and at
minimal cost.
☐ Most materials which become superconducting only do so at <i>liquid helium</i>
temperatures.
☐ The critical current at which LHC is operating depends on temperature.
☐ To maintain the required high currents, the LHC's electromagnets are
cooled down to just 1.9 K, at which temperature helium is a superfluid.

APPLICATIONS

Typical applications of cryogenics are:-

- 1. Low temperature machining
- 2. Cooling systems in LHC
- 3. Cryogenic grinding
- 4. Biological applications

And many others...

Advantages

- It is relatively simple system.
- Enhanced performance
- Super cooling

Disadvantages

- Hazardous conditions at extremely low temperatures
- High energy is required to achieve low temperature.
- Cost of refrigerant is a considerable issue

THANK YOU

