o SNS COLLEGE OF TECHNOLOGY
COIMBATORE 35

Introduction to Global data flow Analysis & Code
Improving Transformations

19CSB301/ATCD-Unit V/1/Dr.B.Vinodhin,ASP/CSE

Introduction to Global data

T rionis

flow Analysis R

* To apply global optimizations on basic blocks,
data-flow information is collected by solving
systems of data-flow equations

* Suppose we need to determine the reaching
definitions for a sequence of statements S

out|S] = gen|S] v (in[S] - kill|S])

Bl:

B3:

m-1 out[Bl] = gen[B1] = {dl, d2}
n out[B2] = gen[B2] L {d1} = {dl, d3}

J-1 d1 reaches B2 and B3 and

dl:i :=
d2:3 :=
v

1d3:3 :=
)

d2 reaches B2, but not B3
because d2 1s killed in B2

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 2

g‘x -
I

Introduction to Global data
flow Analysis

Reaching Definitions

» A definition of a variable xis a statement
that assigns or may assign a value to x

* A definition d of some variable x reaches a
point p if there is a path from the point
immediately following d to p such that no
unambiguous definition of x appear on that
path

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE

@ Introduction to Global data
e flow Analysis
Ambiguity of Definitions

)
1

» Unambiguous definitions (mustassign values)
— assignments to a variable

— statements that read a value to a variable

* Ambiguousdefinitions (may assign values)

— procedure calls that have call-by-reference
parameters

— procedure calls that may access nonlocal variables

— assignments via pointers

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 4

@ Introduction to Global data
o flow Analysis

Safe or Conservative Information

» Consider all execution paths of the control
flow graph

» Allow definitions to pass through
ambiguous definitions of the same variables

* The computedset of reaching definitions is
a superset of the exact set of reaching
definitions

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 5

@ Introduction to Global data
o flow Analysis

Information for Reaching
Definitions

gen[S]: definitions generated within S and
reaching the end of S

kill[S]: definitions killed within S

* in[S]: definitions reaching the beginning of
S

out[S]: definitions reaching the end of S

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 6

@ Introduction to Global data
o flow Analysis
Data Flow Equations

» Data flow information can be collected by
setting up and solving systems of equations
that relate information at various points

out[S] = gen[S] L (in[S] - kill[S])

The information at the end of a statement is
either generated within the statement or
enters at the beginning and is not killed as
control flows through the statement

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 7

Introduction to Global data
flow Analysis S

Reaching Definitions

7 i

Y
1s of the form
— d: a:=b+c

S S

Then, the data-flow equations for § are:

gen|S| = {d}
kill| S =D_-{d}
out|S] = gen|S) v (in|S] - kill[S])

where D_ = all definitions of a in the region of code

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 8

Introduction to Global data
flow Analysis S

Reaching Definitions

is of the form °

S
gen|S) = gen|S,] U (gen|S,] - kill[S,])
kill| S] = kill[S,] O (kill[S,] - gen|S,])
in[S,] = in[S]
in[S,] = out|S,]

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 9

ASMIE
- t\\
i=] 2.
&8 =]
ce 25
C o

LA ’V I

e

¢
-y
2

Introduction to Global data
flow Analysis S

Reaching Definitions

7

is of the form

_—

gen|S) = gen[S,] U gen|S,]
kill| S = kill[S,] M kill[S,]
in[S,] = in|S]

in[S,] = in|S]

ourl S’ = outlS. 1 J ourl S\

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 10

Introduction to Global data
flow Analysis

Reaching Definitions

7

is of the form

gen|S] = gen|S,]
kill]S)] = kill[S,]
in[S,] = in[S] U genl[S,]
out|S] = out|S,]

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE

£

>
P

@ Introduction to Global data
o flow Analysis

FITI o=
Www.sndgroups.com

¢
o
>
o=
e
{n

Accuracy, Safeness, and
Conservative Estimations

* Conservative: refers to making safe assumptions
when insufficient information is available at
compile time, i.e. the compiler has to guarantee
not to change the meaning of the optimized code

* Safe: refers to the fact that a superset of reaching
definitions is safe (some may have been killed)

* Accuracy: more and better information enables
more code optimizations

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 12

-~ -
>

FITI o=
Www.sndgroups.com

Code improving Transformations

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 1

L L

Code improving
- =
Transformations

WWW.snsgroups.com

Equivalent transformations: Two basic block are equivalent
they compute the same set of expressions.

Expressions: are the values of the live variables at the exit
of the block.

Two important classes of local transformations:

-structure preserving transformations:
common sub expression elimination

*
0.0

dead code elimination
renaming of temporary variables

* * *
0.0 0.0 0.0

interchange of two independent adjacent statements.

-algebraic transformations (countlessly many):

-

<+ simplify expressions
» replace expensive operations with cheaper ones.

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE

=

L L

Code improving
- =
Transformations

WWW.SNSEroups.com

10

Transformations on Basic Blocks

* A code-improving transformation is a code
optimization to improve speed or reduce code size

* Global transformations are performed across basic
blocks

* Local transformations are only performed on
single basic blocks

* Transformations must be safe and preserve the
meaning of the code

— A local transformation is safe if the transformed basic
block is guaranteed to be equivalent to its original form

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 1

Code improving
Transformations GiromaTs.

Common-Subexpression
Elimination

* Remove redundant computations

a :=b + ¢ a :=b + ¢

b :=a-d b:=a-d

c :=b + ¢ c :=b + ¢

d :=a~-d d :=Db

oo *
tl := Db c €1 = b * o
t2 := a - tl

t2 := a - tl

£3 bt o td := t2 + t1
td := t2 + t3 -

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 1

Code improving
Transformations

Dead Code Elimination

* Remove unused statements

D
a :

a + 1) . YR
b + ¢

a + 1

Assuming a is dead (not used)

if true goto L2

b .

l,
x +

¥y Remove unreachable code

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE

L a..
=
TUTIONS
WWW.SNSEroups.com

Code improving
Transformations

WWW.SNSEroups.com

13

Renaming Temporary Variables

* Temporary variables that are dead at the
end of a block can be safely renamed

tl := b + ¢ tl := b + ¢
t2 := a - tl t2 := a - tl
tl := €1 * d t3 = t1 * d
d := t2 + tl d := t2 + t3

Normal-form block

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 1

L L

Code improving
- =
Transformations

WWW.SNSEroups.com

14

Interchange of Statements

* Independent statements can be reordered

tl :(=b + ¢ tl := b + ¢

t2 := a - tl t3 = ¢t1 * d
t3 (= ¢t1 * d t2 := a - t1
d := t2 + t3 d := t2 + t3

Note that normal-form blocks permit all
statement interchanges that are possible

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 1

Code improving
Transformations

WWW.SNSEroups.com

15

Algebraic Transformations

* Change arithmetic operations to transform
blocks to algebraic equivalent forms

tl := a - a tl := 0
t2 := b + tl t2 := Db
t3 = 2 * t2 t3 = t2 << 1

19CSB301/ATCD-Unit
V/1/Dr.B.Vinodhin,ASP/CSE 2

-~ -
)

FITI o=
Www.sndgroups.com

Summarization

19CSB301/ATCD-Unit
V/I/Dr.B.Vinodhin,ASP/CSE 12

