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« Optimization is the process of transforming a piece of code to
make more efficient (either in terms of tome or space )without
changing its output or side effects

Why Optimization is needed

« To improve intermediate code
 Better target code

* Executes Faster

* Shorter code

* Less power

* Complexity : Time, Space & Cost
» Efficient memory usage

» Better performance.
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Introduction to code optimization
Techniques

* Some techniques are applied to the intermediate code, to streamline,
rearrange, compress, etc.

* Control-Flow Analysis

* Local Optimizations

* Constant Folding

* Constant Propagation

* Operator Strength Reduction

* Copy Propagation

* Dead Code Elimination

* Common Subexpression Elimination

* Global Optimizations, Data-Flow Analysis
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« Optimization can be categorized into two types
» Machine Independent &Machine dependent

Machine Independent

The compiler takes in the intermediate code and transforms a
part of the code that does not involve any CPU registers
and/or absolute memory locations. For example

do {
item = 10;
value = value + item ;
} while(value<100);
This code involves repeated assignment of the identifier item,
which if we put this way:
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Machine Independent |
Item = 10;
do
{

value = value + item ;
} while(value<100);

It should not only save the CPU cycles. but can be used
On any processor.

Machine Dependent

There are several different possibilities for
performing machine-dependent code optimization .

* Assignment and use of registers
* Divide the problem into basic blocks.

* Rearrangement of machine instruction to
improve efficiency of execution
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Peephole Optimization

Peephole Optimization is a kind of optimization performed
over a very small set of instructions in a segment of
generated code. The set 1s called a "peephole” or a
"window". It works by recognizing sets of instructions that
can be replaced by shorter or faster sets of instructions.

Goals:
- improve performance
- reduce memory footprint

- reduce code size

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE

-~ -~
“»

FITI o=
Www.sndgroups.com



Principles Sources of Optimization
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Fvaniciples Sources of Optimization

« Compile Time Evaluation

« Common sub-expression elimination
* Dead Code Elimination

* Code Movement

 Strength Reduction
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Principles Sources of Optimization

Compile Time Evaluation

A) Constant folding-

Circumference of circle =(22/7) x Diameter
Constant Propagation-

Example-

pi=3.14

radius = 10

Area of circle = pi x radius x radius
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Principles Sources of Optimization

56 =b{54) - 3

Code before Optimization Code after Optimization
Sl =411
SI=4x1
52 =a/S]]
82 =a[8l]
D3 =4x]
§=4x)
54=4x1/ Redundant Expression
$=1
B3 =1
80 ={S1] =83
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Principles Sources of
Optimization

 Code Movement

Code before Optimization Code after Optimization
for (intj=0;j<n;j==) X=v=+2;
{ for(intj=0;j<n;j==)
X=V=+2Z,; {
a[j] =6xj; afj]=6xj;
1 1
J J
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Principles Sources of
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Code before Optimization Code after Optimization

i=0;
if (i==1)

a=x+5;
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Code before Optimization Code after Optimization

B=Ax?2 B=A+A
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Summarization
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