- SNS COLLEGE OF TECHNOLOGY
COIMBATORE 35

Introduction to code optimization
Techniques&Principle Sources of Optimization

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE 1



J

@ Introduction to code optimization
Techniques

(3

AT AT
1] -
<,
o
2]
i o ;-v."
SN

« Optimization is the process of transforming a piece of code to
make more efficient (either in terms of tome or space )without
changing its output or side effects

Why Optimization is needed

« To improve intermediate code
 Better target code

* Executes Faster

* Shorter code

* Less power

* Complexity : Time, Space & Cost
» Efficient memory usage

» Better performance.

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE y)



Introduction to code optimization
Techniques

* Some techniques are applied to the intermediate code, to streamline,
rearrange, compress, etc.

* Control-Flow Analysis

* Local Optimizations

* Constant Folding

* Constant Propagation

* Operator Strength Reduction

* Copy Propagation

* Dead Code Elimination

* Common Subexpression Elimination

* Global Optimizations, Data-Flow Analysis

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE 3



<@z  Introduction to code optimization
s Techniques
« Optimization can be categorized into two types
» Machine Independent &Machine dependent

Machine Independent

The compiler takes in the intermediate code and transforms a
part of the code that does not involve any CPU registers
and/or absolute memory locations. For example

do {
item = 10;
value = value + item ;
} while(value<100);
This code involves repeated assignment of the identifier item,
which if we put this way:

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE 4



Introduction to code optimization

\ -~

“»
Techniques e
Machine Independent |
Item = 10;
do
{

value = value + item ;
} while(value<100);

It should not only save the CPU cycles. but can be used
On any processor.

Machine Dependent

There are several different possibilities for
performing machine-dependent code optimization .

* Assignment and use of registers
* Divide the problem into basic blocks.

* Rearrangement of machine instruction to
improve efficiency of execution

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE 5



Introduction to code optimization
Techniques

Peephole Optimization

Peephole Optimization is a kind of optimization performed
over a very small set of instructions in a segment of
generated code. The set 1s called a "peephole” or a
"window". It works by recognizing sets of instructions that
can be replaced by shorter or faster sets of instructions.

Goals:
- improve performance
- reduce memory footprint

- reduce code size

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE

-~ -~
“»

FITI o=
Www.sndgroups.com



Principles Sources of Optimization
etiminotion Condvont
Fotding
miite Time
Consban®
.P.snc:foo@}ﬁml

Commen. subegmession.
eifmination

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE 7



Fvaniciples Sources of Optimization

« Compile Time Evaluation

« Common sub-expression elimination
* Dead Code Elimination

* Code Movement

 Strength Reduction

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE



. /T)-- D 5

Principles Sources of Optimization

Compile Time Evaluation

A) Constant folding-

Circumference of circle =(22/7) x Diameter
Constant Propagation-

Example-

pi=3.14

radius = 10

Area of circle = pi x radius x radius

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE



Principles Sources of Optimization

56 =b{54) - 3

Code before Optimization Code after Optimization
Sl =411
SI=4x1
52 =a/S]]
82 =a[8l]
D3 =4x]
§=4x)
54=4x1/ Redundant Expression
$=1
B3 =1
80 ={S1] =83

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE

WWW.ARIgroups.com



ASMISEY
c‘: 2 «'.\.\ d
e 2 ~ -
e @i’ >
V% ~ et v, VS
ki”]‘ﬂj;’ T rioniz

Principles Sources of
Optimization

 Code Movement

Code before Optimization Code after Optimization
for (intj=0;j<n;j==) X=v=+2;
{ for(intj=0;j<n;j==)
X=V=+2Z,; {
a[j] =6xj; afj]=6xj;
1 1
J J

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE 1



Principles Sources of
Optimization

. E; | | I. - -
Code before Optimization Code after Optimization

i=0;
if (i==1)

a=x+5;

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE

GBI o=

wwwsnagroups.com



@

s

Frinciples Sources of Optimization e

wwwsnagroups.com

Code before Optimization Code after Optimization

B=Ax?2 B=A+A

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE



-~ -
)

FITI o=
Www.sndgroups.com

Summarization

19CSB301/ATCD-Unit
V/Dr.B.Vinodhini,ASP/CSE 1



