
SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

The DAG representation of basic blocks

&Generating Code from DAG

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 1

The DAG representation of basic

blocks

A DAG for a basic block is a directed acyclic graph with the following labels

on nodes:

1. Leaves are labeled by unique identifiers, either variable names or

constants.

2. Interior nodes are labeled by an operator symbol.

3. Nodes are also optionally given a sequence of identifiers for labels to

store the computed values.

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 2

The DAG representation of basic

blocks

Algorithm for construction of DAG

Input: A basic block

Output: A DAG for the basic block containing the following

information:

1. A label for each node. For leaves, the label is an identifier.

For interior nodes, an operator symbol.

2. For each node a list of attached identifiers to hold the

computed values.

Case (i) x : = y OP z

Case (ii) x : = OP y

Case (iii) x : = y

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 3

The DAG representation of basic

blocks

Method:

Step 1:

If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).

Step 2:

For the case(i), create a node(OP) whose left child is node(y) and right child is

node(z). (Checking for common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If

not create such a node.

For case(iii), node n will be node(y).

Step 3:

Delete x from the list of identifiers for node(x). Append x to the list of

attached identifiers for the node n found in step 2 and set node(x) to n.

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 4

The DAG representation of basic

blocks

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 5

The DAG representation of basic

blocks

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 6

The DAG representation of basic

blocks

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 7

The DAG representation of basic

blocks

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 8

The DAG representation of basic

blocks

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 9

The DAG representation of basic

blocks

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 101

0

The DAG representation of basic

blocks

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 111

1

Generating code from DAG

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 1

2

Generating code from DAG

The advantage of generating code for a basic block from its dag

representation is that from a dag we can easily see how to

rearrange the order of the final computation sequence than we

can start from a linear sequence of three-address statements or

quadruples.

Rearranging the order

The order in which computations are done can affect the cost of

resulting object code. For example, consider the following basic

block:

t1 : = a + b

t2 : = c + d

t3 : = e - t2

t4 : = t1 - t3
19CSB301/TCD-Unit

V/DAG/B.Vinodhini,ASP/CSE 1
3

Generating code from DAG

Generated code sequence for basic block:

MOV a , R0

ADD b , R0

MOV c , R1

ADD d , R1

MOV R0 , t1

MOV e , R0

SUB R1 , R0

MOV t1 , R1

SUB R0 , R1

MOV R1 , t4

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 1

4

Generating code from DAG

• Rearranged basic block:

• Now t1 occurs immediately

before t4.

• t2 : = c + d

• t3 : = e - t2

• t1 : = a + b

• t4 : = t1 - t3

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 1

5

• Revised code sequence:

• MOV c , R0

• ADD d , R0

• MOV a , R0

• SUB R0 , R1

• MOV a , R0

• ADD b , R0

• SUB R1 , R0

• MOV R0 , t4

In this order, two instructions MOV R0 , t1 and MOV t1 ,

R1 have been saved.

Generating code from DAG

A Heuristic ordering for Dags

The heuristic ordering algorithm attempts to make the evaluation

of a nod the evaluation of its leftmost argument. The algorithm

shown below produces the ordering in reverse.

Algorithm:

1) while unlisted interior nodes remain do begin

2) select an unlisted node n, all of whose parents have

been listed;

3) list n;

4) while the leftmost child m of n has no unlisted parents

and is not a

end 19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 1

6

leaf do

begin

5)

6)

end

list m;

n : = m

Generating code from DAG

• Example: Consider the DAG shown below

• Initially, the only node with no unlisted parents is 1 so set n=1

at line (2) and list 1 at line (3).

• Now, the left argument of 1, which is 2, has its parents listed,

so we list 2 and set n=2 at line (6).

• Now, at line (4) we find the leftmost child of 2, which is 6, has

an unlisted parent 5. Thus we select a new n at line (2), and

node 3 is the only candidate.

• list 3 and proceed down its left chain, listing 4, 5 and 6. This

leaves only 8 among the interior nodes so list that. The

resulting list is 1234568 and the order of evaluation is

8654321.

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 1

7

Generating code from DAG

Code sequence:

t8 : = d + e

t6 : = a + b

t5 : = t6 - c

t4 : = t5 * t8

t3 : = t4 - e

t2 : = t6 + t4

t1 : = t2 * t3

This will yield an optimal code for the DAG on machine

whatever be the number of registers.

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 1

8

Generating code from DAG

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 1

9

Summarization

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 122

0

