o SNS COLLEGE OF TECHNOLOGY
COIMBATORE 35

The DAG representation of basic blocks
&Generating Code from DAG

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 1

7 \ \
-+ blocks

‘x The DAG representation of basic

A DAG for a basic block is a directed acyclic graph with the following labels
on nodes:

1. Leaves are labeled by unique identifiers, either variable names or
constants.

2. Interior nodes are labeled by an operator symbol.

3. Nodes are also optionally given a sequence of identifiers for labels to
store the computed values.

a=b+c +) e
b=a-4d

c=b+c e i
d=a-d

by co

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 2

gﬁg The DAG representation of basic 8 S

S

T o LTSI 110775
MA RS O C S WWW.SNSEroups.com

Algorithm for construction of DAG
Input: A basic block

Output: A DAG for the basic block containing the following
Information:

1. A label for each node. For leaves, the label is an identifier.
For interior nodes, an operator symbol.

2. For each node a list of attached identifiers to hold the
computed values.

Case () x:=yOPz

Case (I) x:=0Py

Case (lil) X: =y

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 3

gﬁg The DAG representation of basic -
K blocks

Method:

Step 1:

If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).
Step 2:

For the case(i), create a node(OP) whose left child is node(y) and right child is
node(z). (Checking for common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If
not create such a node.

For case(iii), node n will be node(y).
Step 3:

Delete x from the list of identifiers for node(x). Append X to the list of
attached identifiers for the node n found in step 2 and set node(x) to n.

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 4

The DAG representation of basic
blocks

ty=a+bt, =ty +cd=t, +t,

t: f/;\!
to’q; /)ﬁ\\
) c

to '/+)

% 7\

a b

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 5

%i% The DAG representation of basic ~ _ye=

”1;'/ = h | Py e I/ o TUTIONS

WWW.SNSEroups.com

1. t]l :=4%*
12 == altl]
13 :=4%,
t4 = b[t3]
1S =12%4

t6 = prod+t5

o S T R S

prod ;=16
8. 17 =1+l
9 1:=17

10. 1f 1<=20 goto (1)

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 6

The DAG representation of basic 3=

blocks Gt
(@ ‘1
Statement (1)
94 10
(b) o

Statement (2)

tl

4 10

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 7

The DAG representation of basic 3=

blocks i
0 node for 4*10 exst
(c) already, hence attach
identdfier t3 to the existing
node for Statement (3)

t1.t3

4 10

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 8

The DAG representation of basic 3=
blocks il d

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 9

The DAG representation of basic
blocks

®

Statement (6), attach
t5 identifier prod for

prod0 Statement (7)

4 10

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE

~ b

TS
WWW.SNSEroups.com

The DAG representation of basic 3=
blocks il d

(h)
Fmal DAG

t.a 20

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE

Ny =

-~ -
>

FITI o=
Www.sndgroups.com

Generating code from DAG

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE

H

LLTTTTITION S
W\WW.SNSEroups.com

i?@g* Generating code from DAG S' S
The advantage of generating code for a basic block from its daé
representation iIs that from a dag we can easily see how to
rearrange the order of the final computation sequence than we
can start from a linear sequence of three-address statements or

quadruples.
Rearranging the order

The order in which computations are done can affect the cost of
resulting object code. For example, consider the following basic
block:

tl:=a+b
t2:=c+d
t3:=e-1t2

t4:=t1-1t3
19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE

|

<@ Generating code from DAG ¥

Generated code sequence for basic block:
MOV a, RO

ADD Db, RO
MOV c, R1
ADDd, R1
MOV RO, t1
MOV e, RO
SUBR1, R0
MOV tl,R1
SUB RO, R1
MOV R1, t4

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE

|

@ Generating code from DAG

« Rearranged basic block: * Revised code sequence:
« Now tl occurs immediately « MOVc,RO
before t4. - ADDd. RO
e 2:=c+d « MOVa,RO
e 3:=e-t2 « SUBRO,R1
e tl:=a+bh « MOVa,RO
e t4:=t1-13 « ADDDb,RO
« SUBR1,R0
« MOVRO,t4

In this order, two instructions MOV RO , t1 and MOV 11 ,
R1 have been saved.

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE

ST IO s
WWW.SNSEroups.com

|

LTI Tl
WWW.SNSEroups.com

§@§* Generating code from DAG 8' S
A Heuristic ordering for Dags

The heuristic ordering algorithm attempts to make the evaluation
of a nod the evaluation of its leftmost argument. The algorithm
shown below produces the ordering in reverse.

Algorithm:
1) while unlisted interior nodes remain do begin
,g{)f do select an unlisted node n, all of whose parents have

begin bgen listed;

53) 148RD;

&) nwhibe the leftmost child m of n has no unlisted parents
end and Is not a

end 19CSB301/TCD-Unit

|

V/DAG/B.Vinodhini,ASP/CSE

:@; Cenerating code from DAG .

S

Example: Consider the DAG shown below

Initially, the only node with no unlisted parents is 1 so set n=1
at line (2) and list 1 at line (3).

Now, the left argument of 1, which is 2, has its parents listed,
so we list 2 and set n=2 at line (6).

Now, at line (4) we find the leftmost child of 2, which is 6, has
an unlisted parent 5. Thus we select a new n at line (2), and
node 3 is the only candidate.

list 3 and proceed down its left chain, listing 4, 5 and 6. This
leaves only 8 among the interior nodes so list that. The
resulting list Is 1234568 and the order of evaluation is
8654321.

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE

|

”—

LLTTTTITION S
WWW.SNSEroups.com

LU TTrrions
WWW.sNsgroups.com

c@% Generating code from DAG :

Code sequence:

t8:=d+e
t6:=a+b
t5:=t6-c¢C
t4:=t5*1t8
t3:=t4-e
t2:=t6+t4
tl:=1t2*1t3

This will yield an optimal code for the DAG on machine
whatever be the number of registers.

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE

|

Generating code from DAG e, o

TS
WWW.SNSEroups.com

o B T
s o

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE

A DAG

=

-~ -
)

FITI o=
Www.sndgroups.com

Summarization

19CSB301/TCD-Unit
V/DAG/B.Vinodhini,ASP/CSE 12

